
Learning to Learn OCaml

Alexander Berenbeim

2016-10-10 Monday

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 1 / 21

Outline

A Story of OCaml What Are Programming Languages Again? Extending
Our Abstractions The Engineered Abstraction of OCaml

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 2 / 21

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 3 / 21

A Story of OCaml

What Are Programming Languages Again?

Turing Completeness

A programming language is Turing Complete when ::
it can map every Turing machine to a program
Turing machines can be emulated in a program
It is a superset of a known Turing-complete language

One such example is the λ-calculus, which is the basis of Lisp, ML, Haskell,
and OCaml (oh, and Scheme too).
A Correspondence between ALGOL 60 and Church’s λ-notation (Landin)
proves that sequential procedural programming languages can be
understood using λ-calculus.

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 3 / 21

What is the λ-calculus?

Simply put, higher-order functions; the functions are first-class values.
Syntactically, an expression (or term) e is inductively defined as
follows: e ::= x | λ x.e1 | (e1 e2)
A λ-abstraction λx .e sets up an application; in OCaml this is simply

(fun x -> e)

An abstraction binds the formal parameter x to the entirety of the
expression to the right;
An application calls the the first expression with the

second term as input; applications are left associative, e.g. x (y z) !≡(x y
) z .

Question:
What is λx .x? What is (x x) ? What is λx .x (x) ?

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 4 / 21

Basic Relations on λ terms: α,β,η

The basic equivalence relation on λ-terms is convertibility. Given an
arbitrary λ expression M:
α-conversion::
change of bound variables in M replaces a part of λ x.N of M with λ
y.(N[x:=y]), where y does not occur in N;
M ≡α N if N results from M by a series of changes of bound variable;
this is captured by the α- conversion scheme: λ x.M=λ y.M[x:=y]
β-reduction :: apply functions to arguments
(λx .M)N = M[x := N]

η-conversion :: extensionality in λ-calculus, when two functions are
the same
If x is not free in f, then λx .(fx) ≡η f

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 5 / 21

A Fixed Point Theorem & Some More Syntactic Notions

Theorem: ∀ F ∃ X FX = X.
PROOF Given expression F, let W ≡ λ x.F(xx). Further, let X ≡

WW. Then, syntactically

X ≡WW ≡α (λx .F (xx)))W =β F (WW) =α FX

Free Variables (Inductively)
1 FV(x)={x}, FV(λ x.M)= FV(M)-{x}, FV(MN)=FV(M)∪ FV(N);
2 M is closed or a combinator if FV(M)=∅;
3 Λ0={M∈ Λ| M is closed};
4 Λ0(x̄) = {M ∈ Λ|FV (M) (x̄};
5 A closure of M is λx̄ .M, where x̄ = FV (M).

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 6 / 21

The (simply) Typed λ calculus

We define Typ, the set of types inductively as
1 0 ∈ Typ;
2 σ,τ ∈ Typ ⇒ (σ → τ)∈ Typ

λτ , the typed λ-calculus is defined as follows:
1 λτ has alphabet (,), λ, and variables vσi for each type σ;
2 the set of terms of type σ, Λσ inductively defined by:

vσi ∈ Λσ; M∈ Λσ→ τ ,N∈ Λσ ⇒ (M N)∈ Λτ ; M∈ Λτ , x∈ Λσ ⇒ (λ x.M)∈
Λσ→ τ , with x ranging over the variables.

1 Formulae of λτ consists of equations M=N, with M,N ∈ Λσ;
2 Free,bound,closed, and substitutions are naturally defined;
3 λτ is axiomated by equality axiom and rules and the (β) scheme :(λ x

.M)N=M[x:=N];
4 λητ extends λτ by (η) scheme: if x/∈ FV(M), then λ x.Mx=M.

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 7 / 21

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 8 / 21

Extending Our Abstractions

Motivation: The Propositions as Types paradigm

The underlying idea is that proofs-are-programs, by relating syntactical
derivations via an appropriately well-specified syntax-semantics
adjunction (a Curry-Howard isomorphism)
Let Ω denote a subobject classifier in an (intuitionstic) logic, and
suppose S is some set S. A predicate of S is an object in the function
space ΩS .
A proposition M:* holds when there is a witness to M

P: S-> * is the type of the predicate and P[x] is the claim that P
holds for x ∈ S

∀x ∈ S , ϕ(x) is equivalent to Πx :Sϕ[x]

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 8 / 21

Proposition as Types example

For example ∀x∀yP(x , y)→ ∀xP(x , x) is equivalent to

(
∏
x :S

∏
y :S

P[x , y])→ (
∏
x :S

P[x , x])

and is ’true’ if
λH : (

∏
x :S

y :SP[x , y]).λx : S .H[x , x]

is a valid construction from the context.

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 9 / 21

Dependent Sum Type Formers

In the previous slides, we used a type former Π, that was identified
with universal quantification.
There is a similar notion generalizing coproducts and existential

quantification: the dependent sum type
The proposition (∃ x∈ A, ϕ(x)) is equivalent to Σx :Aϕ[x].
A witness of this type is an ordered pair 〈 a, b〉; such a witness is
syntactically derived if

Γ ` a : A

and
Γ, a : A ` b : B

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 10 / 21

Barendregt’s Λ-cube

/Users/logos/Math For The Real World/In OCaml Lectures/lambdacube.pdf

Figure: The Λ-cube describes the extension of the deductive system described by
λ→ under the Propositions as Types paradigm

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 11 / 21

Barendregt’s Λ-cube unpacked

λ→ may be viewed as a single sorted theory with the sort type denoted
by *, and with vertex defined by ordered pair 〈*,*〉
If we add a second sort, 2, denoting kinds, we can understand each
vertice as corresponding to an element of the power set of the
following ordered pairs:

{〈∗,2〉, 〈2,2〉, 〈2, ∗〉}

1 Polymorphic Types :: λ2 :: 〈 *,2〉 :: kinds dependent on types
2 Type Operations :: λω :: 〈2,2〉 :: kinds dependent on kinds
3 Dependent Types :: λ Π :: 〈 2, ∗〉 :: types dependent on kinds

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 12 / 21

Dependencies of types and terms

In the literature one often sees a different labeling of these two sorts: ∗ as
terms and 2 as types. Either way we still identify the following:
Normal functions :: λ→ terms dependent on terms
Polymorphism :: λ2 Terms dependent on Types
Type operators :: λω Types dependent on Types
Dependent types :: λ Types depending on terms
While the simply typed lambda calculus isn’t very expressive (it’s basically
PL), in the polymorphic λ-calculus, we can do second order logic and
express the parametric identity function: ` Λα.λ x : α.x : ∀ α.α→ α

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 13 / 21

Why does this matter?

Well, λΠω describes the typed system with polymorphic

types, type operations and dependent types. This is known as the Calculus
of Constructions.

CoC extends the Curry-Howard isomorphism that relates each
natural-deduction proof to a term in the simply typed λ calculus.
Coq, the interactive theorem prover written in OCaml, is a
dependently typed functional programming language expressing a
further extension of CoC, the Calculus of Inductive Constructions, by
adding inductive type former rules.

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 14 / 21

What Does This Have To Do With OCaml?

Caml, Categorical Abstract Machine Language, was developed by
INRIA in part to help develop the Coq system in the 80s.
OCaml was developed in part due to the rise of type systems and type
inference in object-oriented programming in the 90s, by extending
Caml to support type-parametric classes, binary methods, and other
object oriented paradigms in a statically type-safe way while avoiding
unsoundness or the run-time type checks that occur in classical Object
Oriented languages like C++ and Java.

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 15 / 21

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 16 / 21

The Engineered Abstraction of OCaml

So, what exactly does this mean for us?

Well, putting this all together, an expression or term is any

valid OCaml program. Every valid expression has a type, and to produce an
answer, OCaml evaluates the expression.

OCaml’s type syntax is explicit as the interpreter relies on it to tell you
the type of every value; by type inference, we often will not need to
specify the type ourselves.
OCaml allows us to define new types using the type keyword.
Formally, most user-defined types are formed with with or
constructors, i.e. they are either sum types or product types.
We can also define types with nullary constructors, i.e. constructors
without arguments:

type day = Monday | Tuesday | Wednesday | Thursday |
Friday | Saturday | Sunday;;

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 16 / 21

Sum Types

nullary constructors are used to describe monomorphic types; we can
define polymorphic types as well, like

type ’a list =
Nil
| Cons of ’a * ’a list;;

Lists are one example of sum types

[true; false; true; true] : bool list;;
[1;2;3;4;5] : int list;;
[1,2,3] : int * int * int list;;

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 17 / 21

Product Types

Product types are finite labeled products of types. They are the
generalization of cartesian products, whose witnesses are called
records.

type ta =
{name : string; email : string ;
schedule : string * day * int list};;

If Alex : ta, then Alex is a record of the type ta, and this means

Alex : string * string * (string * day * int list) =
"Alexander Berenbeim", "aberen2@uic.edu",

[("Model Theory", "Monday", 11); ("AI", "Monday", 13);
("Model Theory", "Wednesday", 11); ("AI", "Wednesday", 13);
("Model Theory", "Friday", 11);("AI", "Friday", 13)];;

If we want to extract information from Alex, we might want to use pattern
matching. . .

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 18 / 21

Pattern Matching

A pattern is not an OCaml expression, rather it is an arrangement of
elements of our alphabet (constants of primitive type, variables,
constructors, and the symbol denoting the wildcard pattern). Pattern
matching applies to values by recognizing the form of a value and
guides the computation accordingly by associating each pattern to an
expression to be computed.
We can use pattern matching to define functions

let negation b = match b with
true -> false
| false -> true;;
val negation : bool -> bool = <fun>

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 19 / 21

Another Example

let tomorrow d = match d with
Monday -> Tuesday
| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday ;;
val tomorrow : day -> day = <fun>

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 20 / 21

Yet Another Example

So far we’ve looked at defining functions solely by pattern matching by
cases. Let’s do something more interesting:

let f = fun (n,m) -> 2 * n * n + 3 * m * m - n * m;;
val f : int * int -> int = <fun>

Alexander Berenbeim Learning to Learn OCaml 2016-10-10 Monday 21 / 21

