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Two Motivating Questions

1 Can surreal-valued genetically defined functions be uniformly
bounded in terms of their complexity?

2 Are there non-trivial examples found in the literature that
correspond to a non-trivial ranking related to the bound
provided for question 1?
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Formal Languages (Terms)

We let L denote a first-order language consisting of formal
function symbols, formal relation symbols, and formal constant
symbols.
L terms are generated recurisvely from the set of constants in
L, variables xi indexed by the natural numbers, and
application of the function symbols of L applied to terms
By abuse of notation t := c |x |f (t̄)

Lr denotes the language of rings {+,−,×} ∪ {0, 1}.
Lor = Lr ∪ {<}.
The set of Lr terms can be identified with Z[x̄ ].



Formal Languages (Formula)

Atomic formula are of the form t1 = t2 or R(t̄).
L formulas are the formula φ generated by the atomic formula,
logical negation, conjunction, disjunction, and quantification
By abuse of notation,
φ := t1 = t2|R(t̄)|¬φ|φ ∨ ψ|φ ∧ ψ|∃xφ|∀xφ
A type p(v̄) is a set of L formula with free variables in
v1, . . . , vn.
In Lor , such that X is an ordered space satisfying the ring
axioms, a cut C can be identified a partial type.
Specifically, C are the partial types consisting of Left and
Right formula, where the Left partial type consists of the
atomic formula t < x , and similarly the Right partial type
consists of the formula x < t, so that L,R ⊂ X and L < R .



Formal Languages Examples

In Lor ,
v1, v2, v3, . . . are all terms
v2 · v2 + v3 is a well-formed term
v1 = v2 · v2 + v3 is one atomic formula φ1

v3 < v2 is another atomic formula is another atomic formula
φ2

ϕ(v1, v2, v3) = φ1 ∧ φ2, is the formula that says,

v1 = v2v2 + v3 ∧ v3 < v2

ψ = ∀v1∃v2v3ϕ(v1, v2, v3) is the sentence



Partizan Games and Disjunctive Game Compounds

A combinatorial game G is a two player game, with players
conventionally called Left and Right, who play alternately, and
whose moves affect the position of the game according to
rules.
Games are partizan whenever these rules distinguish available
moves to Left and Right players. Otherwise they are impartial
If G and H are combinatorial games, H is a Left option of G
whenever Left can move from G to H. Let LG denote the set
of all available direct moves for Left (and similarly RG ). Let
GL denote a generic Left move (and similarly GR).
We can form new games using the recursive disjunctive
compound

G + H =
{
G + HL,GL + H

}∣∣∣ {G + HR ,GR + H
}
.

The class of Partizan games is an Abelian group; the subclass
of numbers will be an ordered Abelian group.



Fundamental Examples

(Endgame) 0 ≡ {}| {}
(Pos) 1 ≡ {0}| {}
(Neg) −1 ≡ {}| {0}
(Fuz) ∗ ≡ {0}| {0}



Outcome Classes and the Fundamental Theorem

There are four exhaustive outcome classes for all combinatorial
games:

1 First player forces a win (N )
2 Second player forces a win (P)
3 Left player can always force a win (L)
4 Right player can always force a win (R)

Theorem (Fundamental Theorem)

If G is a Partizan game with normal play, then either Left can force
a win playing first on G , or else Right can force a win playing
second, but not both.



The Partial Ordering of Partizan Games

By the Fundametal Theorem, there are exactly four
equivalence classes to which a game belongs, which can be
partially ordered according to the favorability of a game for the
Left player:

L

N P

R

If G ,H ∈ P̃G , then G ≥ H if o(G + X ) ≥ o(H + X ) for all
X ∈ P̃G .
G = H if and only if o(G − H) = P

(G = 0 if and only if
o(G ) = P)
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The Partially Ordered Abelian Group of Partizan Games

We denote the class of Partizan game values by PG ≡ P̃G/ =
where = is the definable equality between Partizan games.
The Class can be inductively constructed (e.g. hereditary
property) as follows: for all ordinals α

G̃α = {LG |RG : LG ,RG ⊆
⋃
β∈α

G̃β}

P̃G =
⋃
α∈On

G̃α

The birthday of a partizan game G is the least ordinal α such
that G ∈ G̃α.
We can define negation as follows

−G =
{
−GR

}∣∣∣ {−GL
}

= −RG | − LG = L−G |R−G .



Partial Ordering Up To Day 2 Game values



Numbers

The game-value of G is a number whenever LH < RH at every
subposition H of G (numbers are games whose options are
ordered sets of numbers)
The canonical representation of a surreal number a is the
positioned closed game La|Ra, such that La < Ra and every
x ∈ La ∪ Ra is simpler than a, i.e.

x <s a ⇐⇒ ((x < a ∨ a < x) ∧ (Lx ⊂ La ∧ Rx ⊂ Ra)

∧(Lx ∪ Rx ( La ∪ Ra)

The corresponding game tree is a full binary tree of height the
Class of On.
Numbers can be understood as unique minimal realization of
cuts which correspond functions α→ 2, and a <s b if for
some β ∈ α, b � β = a.



Numbers, Conway Cuts, and Games

Given an ordered space (X , <), a Conway cut (L|R) of X
arises when L ∪ R ⊂ X and L < R .
A Cuesta-Dutari cut is a Conway cut that partitions the
ordered space X .
The canonical realization of a Conway cut is denoted by L|R ,
i.e. the minimal set rank number c satisfying L < c < R .
We can build up a lexicographically, partially well-ordered
binary tree such that each level is a canonical realization of the
cuts of the level below (modulo details of the limit case).
We can think of | as a mapping from the Class of Conway cuts
C to the Class of the surreal numbers, sending cuts (F ,G ) to
the unique minimal set-theoretic ranked number c such that
F < c < G and for all x such that F < x < G , we have
c ≤s x .
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Two Key Results

Definition

Given pairs of sets (A,B) and (C ,D), we say that (A,B) is cofinal
in (C ,D) if for all c in C and d in D there is an a in A and b in B
such that c ≥ a and d ≤ b.

Theorem (Gonshor Inverse Cofinality Theorem)

For all a ∈ No if a = F |G for a pair of sets (F ,G ), then the set
pair (F ,G ) is cofinal in (La,Ra).

Theorem (Conway’s Simplicity Theorem)

Let L,R ⊂ No such that L < R and L ∪ R 6= No. Let
I = {y ∈ No : L < y < R}. Then I is a non-empty convex class for
which there exists a unique x ∈ I such that ι(x) < ι(y) for all
y ∈ I\{x}.



Numbers and Games

To reiterate:

Numbers can be thought of as branches in a binary tree which
describe a canonical type of Partizan game with an ordered
structure.
We can identify every Number-as-branch as the game value of
the game determined by the position closure of the canonical
form of a Number-as-game.
We visualize this in terms of fibres modulo = and up to
restriction of minimal set theoretic rank over a surreal-number
tree.
This minimal set theoretic rank is what is meant by complexity
in this talk. Specifically the length of a surreal number branch.
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Numbers and Games

Above, numbers are vertices in a tree corresponding to the
equivalence class of a recursively definable Conway cut.



Numbers and Simplicity



Length and the Weak Product Lemma

Let ι(a) denote the length of a surreal number, i.e. ι(a) = α such
that we can realize a : α→ 2.
We do not know that

ι(ab) ≤ ι(a)ι(b)

in general.
Ehrlich-van den Dries established the following weak product
inequality:

ι(ab) ≤ ω[ι(a)]2[ι(b)]2.



Conway Normal Form and Sign sequences

(Conway)No is a real-closed such that every element has a
canonical normal form,

∑
νa
ωyi ri , where (yi ) is a descending

sequence of surreal numbers, and ri is a non-zero real number.
Every surreal number a has a corresponding sign sequence
(a) =_φa 〈αi , βi 〉, with ι(a) =

⊕
(αi ⊕ βi )

Let a+ denote the total number of + appearing in the sign
sequence of a, so

a+ =
⊕
µ

αµ

as an ordinal sum.



Sign Sequence Theorem 1

Theorem

Given a = (〈αi , βi 〉)i∈φa, and for any µ ∈ φa, we have

γµ :=
⊕
λ≤µ

αλ,

then the sign sequence of (ωa) is given by

(ωa) =_i∈φa 〈ωγi , ωγi+1βi 〉



Sign Sequence Theorem 2

Theorem

Given a positive real r with sign sequence (〈ρi , σi 〉), the sign
sequence of ωar is

(ωa) _ 〈ωa+
ρ[0, ω

a+
σ0〉_ (〈ωa+

ρi , ω
a+
σi 〉 : 0 < i ≤ ιr)

with ωa+
ρ and ωa+

σ being the standard ordinal multiplication (with
absorption). If r is a negative real, we reverse the signs.



Sign Sequence Reductions

Given a ∈ No>0, define a[ to be the surreal number attained
by omitting the first ⊕ sign.
Given a ∈ No<0, define a] to be the surreal number attained
by omitting the first 	 sign.
Given a surreal number a =

∑
i∈νa

ωai ri in normal form, we

define the reduced sequence (aoi |i ∈ νa) by omitting 	 from
the following sign sequences:

given γ ∈ On, if ai (γ) = 	 and there exists j < i such that
aj(δ) = ai (δ) for all δ ≤ γ, then omit the δth 	;
if i is a successor, ai−1 _ 	 @ ai and if ri−1 is not a dyadic
rational, then omit 	 after ai−1 in ai .



Sign Sequence Theorem 3

Theorem

Given a =
∑
i∈νa

ωai ri ,

(a) =_i∈νa (ωaoi ri )

B., ’21 Classification of intervals of reduction



Computing Length in Practice

Every surreal number has an equivalent Conway normal form,∑
νa
ωai ri , where νa is the order type of the support, and (ai ) is

a well-ordered descending sequence.
There are several sign sequence lemmas that give instructions
for converting a formal power series ωai ri into a sequence of
φa many-ordered pairs (〈αi , βi 〉)i∈φa.
The length of a is an ordinal sum of the pair-wise ordinal sums
αi ⊕ βi (modulo a few details).
A big obstruction to proving ι(ab) ≤ ι(a)ι(b) are interactions
between intervals where reduction takes place.
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Motivating Example

The disjunctive game compound + is an order-preserving
abelian group operation.
We can recursively define a suitable notion of multiplication on
the numbers by

ab = {aLb + abL − aLbL, aRb + abR − aRbR}|

{aLb + abR − aLbR , aRb + abL − aRbL}.

i.e.
(ab)L := aLb + abL − aLbL|aRb + abR − aRbR

(ab)R := aLb + abR − aLbR |aRb + abL − aRbL

This is another example of a recursively definable function with
the uniformity propery (a la Gonshor)



Adjoining New Function Symbols

Let v ,w denote indeterminates, and let f : No→ No be a function
symbol, and suppose S is a set of genetic functions that have
already been defined. Then

1 We form the Ring K := No[{g(v), g(w) | g ∈ S ∪ {f }}],
where S is a set closed under composition consisting of
previously defined genetic functions on one variable.

2 We obtain a Class

S(v ,w) = {c1 + c2h(c3x + c4) : c1, c2, c3, c4 ∈ K , h ∈ S}.

3 We then form Ring R(v ,w) := No[S(v ,w)]PS
, where PS is

the cone of strictly positive polynomials with function from S .
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Amendments to Rubinstein-Salzedo and Swaminathan

We want to choose sets Lf (v ,w) and Rf (v ,w) from R(v ,w) such
that the order condition and cofinality condition will hold:

Fix an x ∈ No, and suppose f (y) has already been defined for
all y ∈ Lx ∪ Rx , substitute v with xL and w with xR in
R(v ,w)

(Order Condition) all xL, xL
′ ∈ Lx and xR , xR

′ ∈ Rx , and
f L ∈ Lf (xL, xR) and f R ∈ Rf (xL

′
, xR

′
) we have f L(x) < f R(x),

and
(Cofinality Condition)

∀x , y , z ∈ No((y < x < z)→

Lf (y , z)[x ] < f (x) < Rf (y , z)[x ].

Once f is defined over No, we prove that the cofinality
condition holds, via (double) induction with respect to the
natural sum of the lengths of the arguments and generation.
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Lf (y , z)[x ] < f (x) < Rf (y , z)[x ].

Once f is defined over No, we prove that the cofinality
condition holds, via (double) induction with respect to the
natural sum of the lengths of the arguments and generation.



Amendments to Rubinsteon-Salzedo and Swaminathan

Finally, set

f (x) := {
⋃

xL ∈ Lx
xR ∈ Rx

{f L(x) : f L ∈ Lf (xL, xR)}}|

{
⋃

xL ∈ Lx
xR ∈ Rx

{f R(x) : f R ∈ Rf (xL, xR)}}



What this means in practice

Genetic functions are defined pointwise with respect to a Conway
cut whose Left and Right options are defined with respect to
substituting in the Left predecessors of x for u and the Right
predecessors of x for v .

However, a cofinality condition must hold, and so sets must form a
generic cut in the sense that for all y < x < z we can substitute in
y/u and z/v so that f L(x ; y , z) < f R(x ; y , z) as f L and f R vary.

These sets have a fixed order type corresponding to the terms
formed in the polynomial ring R(u, v) localized at the positive cone
PS , although in practice, these size of these sets grows with the
complexity of the argument.

The base case of each function is always defined by the constants
appearing in the Left and Right option sets, and the application of
previously defined genetic functions at 0.

When analyzing the complexity, we can induct on the complexity of
our term sets and use pseudo-absolute values to bound our
functions.
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Example: exp and ω

Let [x ]n =
∑
i≤n

1
i!x

i .

Gonshor records Kruskals genetic definition of exp (p145 of
Gonshor):

exp(x) = {0, exp(xL)[x − xL]n, exp(xR)[x − xR ]2n+1}

{ 1
[xR − x ]n

exp(xR),
1

[xL − x ]2n+1
exp(xL)}

Following Conway, we can define ω:

ω(x) =
{
0, nω(xL)

}∣∣∣{ 1
2n
ω(xR)

}
which agrees with the ordinal valued ω function when restricted to
ordinals.



Gamma, Delta, and Epsilon Numbers

Following Hessenburg,
γ ordinals additively indecomposable, i.e. for all x , y ∈ γ,
x ⊕ y ∈ γ.
δ ordinals are additionally multiplicatively indecomposable, i.e.
for all x , y ∈ δ, x ⊗ y ∈ δ.
Epsilon ordinals ε are ordinals ordinals 3 1 such that for all
x ∈ ε, xε = ε.



Γ∆E and Surreal-arithmetic

It has been known early on that closure under surreal-arithmetic
operations corrsponds to truncating the surreal binary tree at
heights corresponding to specific limit ordinals:

Gamma No(λ) is an additive subgroup of No if and only if λ is a
Gamma ordinal of the form ωα for some ordinal α.

Delta No(λ) is a commutative subring of No if and only if λ is a
Delta ordinal of the form ωγ for some Gamma ordinal γ.

Epsilon No(λ) is a real-closed subfield of No if and only if λ is an
Epsilon number.

My research builds off this to bound the complexity of structures
defined in extension of Lor with sets of genetic symbols G.



Pseudo-absolute values

Let ς : S1 → S2 be a map between two semi-rings. We say ς is a
pseudo-absolute value if the following holds:

1 ς(x) = 0 ⇐⇒ x = 0;
2 ς(xy) ≤ ς(x)ς(y);
3 ς(x + y) ≤ ς(x) + ς(y)



√

(Cantor) Every ordinal α has a normal form
∑

i∈Nα
ωαi such

that Nα ∈ ω and αi ≥ αj for i < j ∈ Nα.
For α1, α2 ∈ On with Cantor normal form

∑
j∈ni

ωαi,j for i = 1, 2

we say α1 ∼Γ α2 if and only if α1,0 = α2,0.
We define

√
: On→ On by sending α 7→ ωα0 .

We extend this to No→ On by precomposing with ι, i.e.√
: No→ On by a 7→

√
(ι(a)).

Theorem (B.,’21)
√

forms a pseudo-absolute value sending No to {0, 1} ∪ω”On, i.e.
√
x = 0 ⇐⇒ x = 0;
√

(x + y) ≤
√
x +
√
y ;

√
(xy) ≤

√
x
√
y .



Gonshor Fixed Point Theorem

Theorem (Gonshor Fixed Point)

Suppose f : No → No satisfies the following properties:

1 For all a ∈ No, f (a) is a power of ω;

2 a < b ⇒ f (a) < f (b);

3 There are two fixed sets C and D such that whenever a = G |H where G
contains no maximum and H contains no minimum, then
f (a) = (C ∪ f (G))|(D ∪ f (H)).

Then the function g defined by

g(b) :=
{
f (n)(C), f (n)(2g(bL))

}∣∣∣{f (n)(D), f (n)(
1
2
g(bR))

}
is onto the set of all fixed points of f and satisfies the above hypotheses with
respect to the sets f (n)(C) and f (n)(D), where f (n) denotes the nth iterate of f .
Furthermore, there is a On-length family of functions fα satisfying all three
conditions, such that f0 = f and for α > 0, fα is onto the set of all common
fixed points of fβ for β ∈ α and satisfies condition (iii) with respect to the sets
h(C) and h(D) where h runs through all finite compositions of fβ for β ∈ α.



Veblen hierarchy

A normal ordinal valued function ϕ0 is any continuous (with
respect to the order topology) strictly increasing ordinal valued
function.
Given a normal function ϕ0, the Veblen functions with respect
to ϕ0 are the sequence of functions 〈ϕα : α ∈ On〉 such that
each ϕα enumerates the common fixed points of ϕβ for every
β ∈ α.
The Veblen hierarchy is the Class of functions 〈ϕα : α ∈ On〉
generated by ϕ0(x) = ωx .
Finally, we have the following ordering on the Veblen hierarchy:

ϕα(β) < ϕγ(δ) ⇐⇒

(α = γ∧β < δ)∨(α < γ∧β < ϕγ(δ))∨(α > γ∧ϕα(β) < δ))
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Veblen hierarchy

Recall
ω(x) =

{
0, ω(xL)n

}∣∣∣ {ω(xR)2−n
}

and

ε(x) =
{
0, ω(n)(0), ω(n)(ε(xL) + 1)

}∣∣∣ {ω(n)(ε(xR)− 1)
}

Because ω is a genetic function, it is immediate that every
Veblen function is a genetic function
In fact, we could show that the construction of g in GFPT
given ϕ0(x) = ω(x) is equicofinal with the construction of
ε(x).
Our primary motivation here is to identify for every g ∈ G , the
least α such that for all γ ∈ On, if x ∈ No(γ) then
g(x) ∈ No(ϕα(γ)).



Partial Veblen Rank

We inductively define the notion of partial Veblen rank as follows:

Fix γ ∈ On, VR(g , γ) is defined as follows:
VR(g , γ) ≥ 0;
VR(g , γ) ≥ λ for limit ordinals λ if and only if VR(g , γ) ≥ β
for all β ∈ λ;
VR(g , γ) ≥ α + 1 if and only if there is an x ∈ No(εγ) such
that

√
g(x) ≥ ϕα+1(γ).
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Full Veblen Rank

We say VR(g , γ) = α whenever VR(g , γ) ≥ α and
VR(g , γ) 6≥ α + 1, i.e. α is the least ordinal such that for all
x ∈ No(ϕ1(γ)), g(x) ∈ No(ϕα+1(γ)).

We then define the Veblen rank of g by VR(g) :=
⋃

γ∈On
VR(g , γ).

We can extend this definition to g : Non → No by noting that ι(x̄)
is the Hessenberg sum of the lengths of the components, so we can
interpret Non(εγ) as the initial subset of Non consisting of n-tuples
of branches whose Hessenberg sum is less than εγ .

Whenever VR(g) ≥ α for all α ∈ On, rather than denote this by
saying the rank is ∞, we indicate this by saying the rank is On.

As an aside, we can extend the notion of Veblen rank from entire
genetic functions, to those that are defined on convex intervals of
surreal numbers, like all positive surreal numbers in the case of log.
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Main Theorem

Theorem (Main Theorem (B., ’21))

Every genetic function g has Veblen rank in On, i.e.
∃γ ∈ On∀β ∈ On(γ ∈ β ⇒ VR(g , β) ≤ VR(g , γ).

This proof is built on the following:

Lemma (B, ’21)

For all surreal-valued genetic functions f , g ,
VR(f + g) ≤ max{VR(f ),VR(g)}
VR(fg) ≤ max{VR(f ),VR(g)}
VR(f ◦ g) ≤ max{VR(f ),VR(g)}
For a set S of genetic functions, and any term t generated by
Loring ∪ S ,

VR(tn) ≤ VR(t) ≤ sup{VR(g) : g ∈ S}



Summary of Proof

The most important piece:

Theorem (B, ’21)

Suppose that f is a genetic function whose Left and Right options
sets has order type τ , i.e. o.t.|Lf ∪ Rf | = τ , and Lf ∪ Rf consists
of genetic functions gi indexed by some set I , such that for each
i ∈ I , VR(gi ) = αi . Set α = supI αi , and µ = max{τ, α}. Then
VR(f ) ≤ µ+ 1.
Further, VR(f ) = µ+ 1 if and only if for at least one γ ∈ On, there
is some xγ ∈ No(εγ) for which there is an infinite enumeration K of
terms in Lf ∪ Rf , such that for k , k ′ ∈ K ,
ϕk(γ) ≤

√
tk(xγ) ≤

√
tk ′(xγ) when k < k ′ and such the sequence

(
√
tk(xγ)) is cofinal with ϕµ+1(γ).

After proving the above theorem, we induct on complexity of
genetic functions to prove Main Theorem 1.
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Summary of Proof

Throughout these proofs we make frequent use of the fact
that numbers, and the value of genetic functions, is defined
with respect to the minimal set theoretic realization satisfying
L < c < R for the corresponding Left and Right options.
As a consequence, the complexity of arguments can only grow
so rapidly, determined entirely by the complexity of constants,
the respective order type of the Left and Right option sets,
and the complexity of functions of earlier generations.
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Genetic Functions are strongly tame

A function f : Non+1 → No is strongly tame if and only if for all
a < b ∈ No, ē ∈ Non, d ∈ No, either f (x , ē) is constant or there
exists ζ0, . . . , ζm ∈ NoD such that a = ζ0 < . . . < ζm = b and for i
=0,...,m-1

∀x ∈ (ζi , ζi+1), f (x , ē) > d or

∀x ∈ (ζi , ζi+1), f (x , ē) < d

As a direct consequence of the Main Theorem, we also can see
that once we know a genetic function has a given Veblen rank, then
we can always bind that genetic function, i.e. genetic functions are
strongly tame.



Examples

The following have zero Veblen rank:
Identity
Addition
Negation
Multiplication
exp

ω

log

Additionally, each Veblen function ϕα(x) has Veblen rank α (B,
’21)



VR(κ) = 1 (B., ’21)

The κ numbers are the simplest elements in their respective
exp-log class.

The genetic definition is given by

κ(x) :=
{

exp(n)(0), exp(n)(κ(xL))
}∣∣∣ {log(n)(κ(xR))

}
One can check that κ(1) = ε0 = ϕ1(0), and so we have a
witness to VR(κ) ≥ 1.
One checks by induction that VR(κ, γ) ≤ 1 on all γ, while
using some bounds on the complexity of exp and log
established by van den Dries and Ehrlich.
In particular, one checks for all x ∈ No(εγ) that√

(κ(x)) < ϕ2(γ), which follows using the aforementioned
inequalities to show that

√
(κ(x)) ≤ ϕ1(ιx) < ϕ1(ϕ1(γ)) < ϕ2(γ)
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VR(λ) = 1 (B., ’21)

Definition

Let a ∈ No>0
>0, i.e. a is a positive infinite surreal number. We say a

is log-atomic if for all n ∈ N, there is a bn ∈ No such that for the
n-fold iterate of log we have

log(n)(a) = ωbn .

We denote the class of log-atomic numbers by L.

Then defining

λ(x) =
{
m, exp(n)(n · log(n) λ(xL)

}∣∣∣{exp(n)

(
1
m

log(n) λ(xR)

)}
one sees the λ numbers correspond to the log-atomic numbers
following applications of the aforementioned inequalities in the
previous slide, we also establish that VR(λ) = 1.
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Questions and Future directions

Can similar work be done for characteristic p cases? p-adic
cases?
Generalizing work on homogeneous and model-complete
theories? (when are we guaranteed to get initial embeddings)
What about realization in exotic set theories?



Thank You

THANK YOU!
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