
Learning to Learn OCaml

Alexander Berenbeim

2016-10-25 Tuesday

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 1 / 16

Outline

Learning To Learn OCaml: Lecture III Review of extra work The unit Type
Learning To Program With The Unit Type

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 2 / 16

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 3 / 16

Learning To Learn OCaml: Lecture III

Review of extra work

Tail Recursive Functions

One way to write a tail-recursive function counting the number of true
elements in a list is as follows:

let rec count_true l =
match l with

[] -> 0
| true :: t -> 1+ count_true t
| false :: t -> count_true t;;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 3 / 16

member Function

First, we recognize that member is of type α -> (α list -> bool)
So we to define a function that takes a witness of α to a function from
α list to a boolean value, i.e. member x is of type α list -> bool

let rec member elt l =
match l with

[] -> false
| h :: t -> (h = elt) || (member elt t);;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 4 / 16

make_set function

Now we make our first not-so-trivial application of a definable predicate to
turn a list into a set

let rec make_set l =
match l with

[]-> []
| h :: t -> if member h t then make_set t

else h :: make_set t;;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 5 / 16

mergeSort Function

let rec merge x y =
match x, y with
[], l -> l
| l, [] -> l
| hx::tx, hy::ty -> if hx < hy

then hx :: (merge tx (hy :: ty))
else hy :: (merge (hx :: tx) ty);;

let rec msort l =
match l with
[] -> []
| [x] -> [x]
| _ -> let left = take (length l / 2) l in

let right = drop (length l / 2) l in
merge (msort left) (msort right);;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 6 / 16

apply Function

let rec map f l =
match l with
[] -> []
| h :: t -> f h :: map f t;;
let rec apply f n x =
if n = 0 then x
else f (apply f (n - 1) x);;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 7 / 16

filter and mapl Functions

let rec filter f l =
match l with
[] -> []
| h :: t -> if f h then h :: filter f t

else filter f t;;

Then, since a map which takes lists of α lists as an argument is of type (α
-> β) -> α list list -> β list list

let rec mapl f l = map (map f) l;;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 8 / 16

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 9 / 16

The unit Type

What is the unit Type?

When OCaml prints to the screen with functions like print_int x or
print_string x, the output will look like x- : unit = ()
This function takes an integer as its argument, prints an integer on
the screen, and then closes; there is no output
That is, there is nothing that occurs to the arguments; they’re
mapped to the only witness of the unit type, ()
The outputs on the screen are called side effects

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 9 / 16

What is the unit in relation to void?

The unit type is similar, but distinct from the void type found in C.
Recall the void type from C is the type for a result of functions that
return, but do not provide, a result value to its caller.
Both are used for their side effects, but the void type only simulates
some of the properties of the unit type, as the void type can not be
a type of argument in C, whereas functions like print_newline in
OCaml are of type unit -> unit.
There is also a difference in that the void is never stored in a record
type, while the unit type can be stored.

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 10 / 16

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 11 / 16

Learning To Program With The Unit Type

Example 1 : Writing To The Screen

We can produce several side effects by using the ; symbol, which
evaluates the expression on the left handside, then tosses the result
(so that an expression like x;y is thus of the same type as y).
For example, to print an entire dictionary (say d : int × string) to
the screen::

let print_dict_entry (k , v) =
print_int k ; print_newline () ;
print_string v ; print_newline ();;

let rec iter f l =
match l with

[] -> ()
| h :: t -> f h ; iter f t;;

let print_dict d = iter print_dict_entry;;
Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 11 / 16

Example 2 : Reading From The Keyboard

Of course, printing things isn’t the only thing we do with computers;
we want to input information from time to time as well!
OCaml has built in functions that allow us to input values of int and
string, read_int and read_string respectively, of type unit to
int (or string).

let rec read_dict () =
try

let i = read_int () in
if i = 0 then [] else

let name = read_line () in
(i, name) :: read_dict ()

with
Failure "int_of_string" ->

print_string "This is not an integer. We’ll be here all day until you enter an integer.";
print_newline ();
read_dict () ;;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 12 / 16

Example 3 : Using Files

It is obviously inefficient to have to manually enter a new data set
every time you want to call upon it.
OCaml has basic functions that help to read and write from places that
data is stored on our computer
If a place is of the type in_channel, we can read from it; if a place is
of the type out_channel, we can write to it.
Importantly, OCaml does not pass types as types when data is being
read or written, so OCaml passes integers as character arrays.
We work around the lack of an output_int function by using the
built in string_of_int function.
There is also no output_newline function, so we use the special
character ’\n’
The function open_out gives an output channel for a filename given
by the input string and whenever called, must eventually be followed
by close_out, if we ever want to close the file.
On the next slide, we’ll enter and store a dictionary
Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 13 / 16

Example 3 : Writing To Files (Cont’d)

let entry_to_channel ch (k , v) = outout_string ch (string_of_int k);
output_char ch ’\n’;
output_string ch v;
output_char ch ’\n’;;

let dictionary_to_channel ch d = iter (entry_to_channel ch) d;;
let dictionary_to_file filename dict =

let ch = open_out filename in
dictionary_to_channel ch dict;
close_out ch;;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 14 / 16

Example 4rgrg : Reading From Files (Cont’d)

let entry_of_channel ch =
let number = input_line ch in

let name = input_line ch in
(int_of_string number, name);;

let rec dictionary_of_channel ch =
try

let e = entry_of_channel ch in
e :: dictionary_of_channel ch

with
End_of_file -> [];;

let dictionary_of_file filename =
let ch = open_in filename in

let dict = dictionary_of_channel ch in
close_in ch; dict;;

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 15 / 16

Table of Useful Functions

Function Type Description
print_int int -> unit prints an integer to the screen
print_string string -> unit prints a string
print_newline unit -> unit prints a new line to the screen
read_line unit -> string read a string from the user
read_int unit -> unit read an integer from the user
int_of_string string -> int makes an integer from a string

raising =Failure "intofstring"
in the event of an error

open_out string -> out_channel given a file name, opens a channel
for output, rasing Sys_error if
the file cannot be opened

close_out string -> unit closes the output channel (never forget)
open_in string -> in_channel opens a channel for input named by the

given string
close_in in_channel -> unit close the input channel (never forget)
output_string out_channel -> string -> unit write a string to an output channel
output_char out_channel -> char -> unit write a character to an output channel

Alexander Berenbeim Learning to Learn OCaml 2016-10-25 Tuesday 16 / 16

