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Abstract

Quantum mechanics rapidly developed as a physical theory after several decades of serious empirical challenges

to the model of classical mechanics at the subatomic level. This paper starts with a description of separable

Hilbert spaces and basic definitions regarding operator theory. The second section describes the mathematical and

experimental developments that led to the separable Hilbert space formulation of quantum mechanics developed

by Von Neumann, who reconciled Heisenberg’s matrix mechanical with Schrödinger’s wave mechanical description

of quantum mechanics. The third section examines the probability interpretation of Quantum Mechanics in light

of the separable Hilbert space framework, as well as the limitations of that approach. The fourth, and final,

section describes two different methods that developed in the 1930’s and 1940’s around addressing some of these

limitations: the von Neumann algebras and Schwarz’s field of distributions.
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Foreward
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The target audience of this paper is deliberately limited: these are private notes meant for my friends and for my

professor Elcim Elgun. Some of the examples provided are from my course notes from Brian Greene’s Quantum

Mechanics sequence and do not reflect my own work. These examples appear starting in section 2.4. Some of the

examples prior to this section were left as exercises in [8], but were found to be suitable for the exposition of the

ideas in this paper.

Again, many thanks need to go out to both Brian Greene for introducing me to most of this material, and my

professor Elcim Elgun, who was both incredibly kind and patient with me when I needed to withdraw from my

studies for family reasons.
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”Nobody, except topologists, is interested in problems about Hilbert space; the people who work in Hilbert

space are interested in problems about operators.”- Paul Halmos, ”Ten Problems in Hilbert Space”

1 Mathematical Preliminaries: Hilbert Spaces, Isomor-

phisms, and Operators

1.1 There’s Always Room In Hilbert Space

Although David Hilbert was the first to investigate these extraordinary mathematical spaces that

generalize Euclidean space and extend vector algebra to infinite dimensional cases, the term Hilbert

space was coined by John von Neumann. It was von Neumann, whose pioneering research in quantum

mechanics made extraordinary use of the properties which define Hilbert spaces, who saw their wide

ranging applications to signal processing, operator theory, partial differential equations, engineering,

economics, and many of the other areas of mathematics where von Neumann saw fit to write a paper.

Formally speaking, we define them as follows:

Definition. A Hilbert space H is a real or complex inner product space that is also a complete metric

space with respect to the distance function induced by the inner product 〈, 〉.

Furthermore, the inner product satisfies the following properties

1. The inner product of an element with itself is positive definite

〈x, x〉 ≥ 0

2. The inner product of a pair of elements is equal to the complex conjugate of the swapped elements

〈x, y〉 = 〈y, x〉

3. The inner product is linear in its first argument

〈αx1 + βx2, y〉 = α〈x1, y〉+ β〈x2, y〉

It follows that a complex inner product is antilinear in its second argument

Proof.

〈x, αy1 + βy2〉 = 〈αy1 + βy2, 〉 = ᾱ〈y1, x〉+ β̄〈y2, x〉 = ᾱ〈x, y1〉+ β̄〈x, y2〉

and it follows a real inner product is bilinear.

Finally, the distance function is given by the norm ‖x‖ =
√
〈x, x〉 by

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉

One remarkable property of Hilbert spaces is that they enable geometric arguments. In fact, their

geometric character is what intrigued von Neumann to apply them to Quantum Mechanics and inspired
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his search for a continuous geometric formulation of quantum theory. With geometry in mind, the

Cauchy-Schwarz inequality is of great importance:

Lemma 1. (Cauchy-Schwarz)For all elements x and y of an inner product space

|〈x, y〉| ≤ ‖x‖ · ‖y‖

where equality occurs if and only if x and y are linearly dependent.

Proof. Consider arbitrary x, y in our inner product space over a field k, where k is either the field R

or C. Without loss of generality, if y = 0, it is clear that we have equality. Now assuming x, y 6= 0, we

define

z = x−
〈x, y〉
〈y, y〉y

And by the linearity of the inner product in the first argument, we find

〈z, y〉 =

〈
x−
〈x, y〉
〈y, y〉y, y

〉
= 〈x, y〉 −

〈x, y〉
〈y, y〉〈y, y〉 = 0

so z is a vector orthogonal to y. So now we have

x = z +
〈x, y〉
〈y, y〉y

and thus

‖x‖2 =

∣∣∣∣∣∣
〈x, y〉
〈y, y〉

∣∣∣∣∣∣
2

‖y‖2 + ‖z‖2 =
|〈x, y〉|2

‖y‖2 + ‖z‖2 ≥
|〈x, y〉|2

‖y‖2

Then, multiplying both sides of the inequality by ‖y‖2

|〈x, y〉|2 ≤ ‖x‖2‖y‖2

Moreover, equality is held when ‖z‖2 = 0, which, given the definition of z, occurs only when y is

linearly dependent on x.

Corollary 2. The inner product between two vectors can be geometrically characterized by

〈x, y〉 = ‖x‖‖y‖ cos θ

When applied to the inner product space of square-integrable complex functions, we see the inequality

as ∣∣∣∣∫
Ω

fḡ

∣∣∣∣2 ≤ ∫
Ω

|f |2
∫

Ω

|g|2

which is a generalization of Hölder’s inequality.

Example. One important example of a Hilbert space is the sequence space

`2(Z) = {x = {xn} ∈ CZ :
∑
n∈Z

|xn|2 <∞}
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and the inner product is defined for two sequences x,y as

〈x,y〉 =

∞∑
−∞

xnyn.

Although we leave it to the reader to verify that this satisfies the definition of a Hilbert space, we take

care to note that if ‖c‖2 < ∞, it can be ”normalized” to 1. As we shall see, this normalization can

apply to all such normed values.

1.2 Why There Is Always Room In The Hilbert Hotel: Countable

Orthonormal Bases

One of the critical aspects of linear algebra which is generalized in Hilbert spaces is the notion of an

orthonormal basis. This concept has wide ranging physical applications, of which this paper will try

to make clear. Formally

Definition. An orthonormal basis is a family {ei}i∈I ⊂ H for some index I which satisfy the following

conditions

1. Orthogonality: For i 6= j ∈ I, 〈ei, ej〉 = 0

2. Normalization: Every element i ∈ I has norm 1: ‖ei‖ = 1

3. Completeness: Span({ei}) = H

In a sense, these first two requirements can be given by the following condition:

∀i, j ∈ I 〈ei, ej〉 = δij

while the third condition, in the finite case can be conceived of as certainly saying

∀x ∈ H∃{ci} ⊂ k x =

n∑
ciei

As an inner product space complete under a metric, Hilbert spaces are clearly topological spaces.

However, there are a real diversity of Hilbert spaces concerning countability properties. Recall:

Definition. A topological space is called separable if it contains a countable dense subset.

We leave it to the reader to verify that every separable Hilbert space has an orthonormal basis1.

Lemma 3. Linear Approximation Lemma Suppose that {e1, . . . , en} is an orthonormal set in an

inner product space (χ, 〈, 〉). Let E = Span{e1, . . . , en} and define for f ∈ χ

d(f,E) = inf {‖f − g‖ : g ∈ E}

Then

d(f,E)2 =

∥∥∥∥∥f −
n∑
i=1

〈f, ei〉ei

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|2

Moreover
n∑
i=1

〈f, ei〉ei is the unique vector g ∈ E such that ‖f − g‖ = d(f,E)

1Hint: This can be verified by taking a linearly independent subsequence of any countably dense sequence of elements from H, and
then applying Gram-Schmidt to the sequence.
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Proof. Let g =
n∑
i=1

αiei ∈ E. Then

‖f − g‖2 = 〈f − g, f − g〉

= 〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉

= ‖f‖2 − 2Re〈f, g〉+ ‖g‖2

= ‖f‖2 − 2Re

(
n∑
i=1

αi〈f, ei〉

)
+

n∑
i=1

|αi|2

≥ ‖f‖2 − 2

n∑
i=1

|αi||〈f, ei〉|2 +

n∑
i=1

|αi|2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|2 +

n∑
i=1

(|〈f, ei〉| − |αi|)2

≥ ‖f‖2 −
n∑
i=1

|〈f, ei〉|2

These inequalities become equalities whenever αi = 〈f, ei〉 for all 1 ≤ i ≤ n. Thus if

g =

n∑
i=1

〈f, ei〉ei

then this g corresponds exactly to

inf{‖f − h‖ : h ∈ E} = ‖f − g‖.

Corollary 4. (Bessel’s Inequality) For H with orthonormal basis {ei}, for f ∈ H,

∞∑
i=1

|〈f, ei〉|2 ≤ ‖f‖2

In general, we characterize inner product spaces with orthonormal basis by the Orthonormal Basis

Theorem, which can be stated as follows:

Theorem 5. (Orthonormal Basis Theorem) Let χ be an inner product space and {ei}∞i=1 be an

orthonormal sequence. Then the following are equivalent:

1. Span{ei}∞i=1 =

{
n∑
i=1

αiei : n ∈ N, αi ∈ C
}

is dense in χ.

2. For every f ∈ χ, we have Bessel’s Equality

‖f‖2 =

∞∑
i=1

|〈f, ei〉|2

3. For every f ∈ χ, we have under the ‖ · ‖ limit

lim
n→∞

n∑
i=1

〈f, ei〉ei = f

which can be written as

f =

∞∑
i=1

〈f, ei〉ei
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4. For every f, g ∈ χ, we have Parseval’s identity

〈f, g〉 =

∞∑
i=1

〈f, ei〉〈ei, g〉

This leads to an important theorem:

Theorem 6. (Abstract Plancheral Theorem) Let χ be an inner product space and let {en}n∈Z ⊂ χ

be an orthonormal basis. Then the operator

U : χ→ `2

given by

Uf = {〈f, en〉}

is an isometry. In other words,

‖Uf‖ = ‖f‖

and

〈Uf,Ug〉 = 〈f, g〉

Proof. For any f ∈ χ

‖Uf‖22 =
∑
|〈f, en〉|2 ≤ ‖f‖2

by Bessel’s inequality. It is clear that U is a linear map into `2.

Next, we see by Parseval’s identity that

〈Uf,Ug〉 = 〈{〈f, en〉}n∈Z, 〈g, en〉}n∈Z〉

=
∑
n

〈f, en〉〈g, en〉

= 〈f, g〉

Finally, setting f = g, we find our desired result

Of great consequence are the following results:

Theorem 7. (Riesz-Fischer theorem) Let {en} be an orthonormal basis for an infinite dimensional

Hilbert space H. If {cn} is a sequence of numbers such that
∑
|cn|2 converges, then there is an x ∈ H

such that x =
∞∑
n−1

cnen where cn = 〈x, en〉.

Corollary 8. There is an isometry isomorphism between `2 and any infinite dimensional separable

Hilbert space H, and furthermore, any two such Hilbert spaces are isomorphic.

Proof. (Sketch) Given an orthonormal basis {en}n∈Z ⊂ H, define an operator T : `2 → H by

T ({cn}) =
∑
n

cnen
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1.3 Operator: What’s your number?

Operators are ubiquitous in mathematics. To the layman, mathematics is merely arithmetic operators

acting on the positive reals, however, the practical importance of more abstract operators cannot be

overstated. In classical mechanics, the derivative is the de facto operator, and we are to show that

linear operators are of crucial importance in the study of quantum mechanics.

Definition. Let U and V be two normed vector spaces. A linear operator Â : U → V is a bounded

operator if there exists a M > 0 such that

‖Âx‖V ≤M‖x‖U

for all x ∈ U .

We see that bounded operators form their own vector space, with a norm compatible with the norms

of U and V , where the norm is defined

‖Â‖ := inf{M : ‖Âx‖V ≤M‖x‖U}

In the case where we’re dealing with endomorphic operators from U to U , this reduces to the familiar

looking

‖ÂB̂‖ ≤ ‖Â‖ · ‖B̂‖

Here, we notice that we can identify linear operators in our Hilbert space as linear transformations.

Now, recall the following definitions which should be covered in an introductory abstract algebra course:

Definition. In an arbitrary vector space, a scalar λ is an eigenvalue and a nonzero vector x is an

eigenvector of a linear transformation A if

Ax = λx.

Definition. For a given operator, the set {λi} of eignevalues is called the spectrum of A. If a given

eigenvalue is a multiple root of the characteristic polynomial ( given as det(A − λI) = 0), then the

spectrum is said to be degenerate.

One particularly important class of operators are self-adjoint operators.

Definition. Let A be a linear transformation on a vector space V . For every A, the operator A†,

which satisfies

〈Ax, y〉 = 〈x,A†y〉 for all x, y ∈ V

is called the adjoint of A.

Definition. If A = A†, then A is its own adjoint, and so A is called a self-adjoint operator. In real

inner-product spaces, a self-adjoint operator is called a symmetric operator, and in complex inner-

product spaces, it is called a Hermitian operator.

Theorem 9. If Â is a self-adjoint linear operator, then every eigenvalue of Â is real valued.
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Proof. The eigenvalues of Â are the λ such that Âx = λx where x 6= 0. Thus

λ∗〈x, x〉 = 〈x, λ∗x〉 = 〈x, Â†x〉 = 〈Âx, x〉 = 〈λx, x〉 = λ〈x, x〉

Since, x is an eigenvector, x 6= 0, and hence 〈x, x〉 6= 0, it follows that λ∗ = λ and so λ is real.

Corollary 10. The eigenvalues of a Hermitian operator Â are real and λ =
〈x, Âx〉
‖x‖2

Of great theoretical importance is the result that a unitary diagonalizing matrix can be constructed

from any Hermitian matrix, regardless of repeated eigenvalues.

Theorem 11. Any Hermitian matrix A may be generalized by a unitary similarity transformation;

i.e., there exists a unitary matrix U such that U−1AU is a diagonal matrix (the diagonal elements of

which are the eigenvalues of A).

The proof of this theorem can be found in [4]. Theorem 9 can be generalized to an infinite dimensional

Hilbert space, but first we will need to consider projection operators.

Definition. A projection operator on a vector space V is an idempotent linear map Pn : V → V , ie.

P 2
n = Pn

Pn projects any vector into the one-dimensional subspace of V spanned by en, and any projection is

associated with a direct sum decomposition. We can define a projection operator Pn as follows

x′ = Pnx := 〈en, x〉en

where en is a unit vector.

Now consider an N-dimensional Hermitian operator Â with eigenvalues {λn} and eigenvectors {en},

and for convenience, assume the spectrum is non-degenerate.

Notation. Recall that since eigenvectors for a symmetric operator form an orthonormal basis, and Â

is a Hermitian operator, and hence symmetric, we can apply the orthonormal basis theorem to define

identity operator Î as follows:

Îg ≡
N∑
n=1

〈en, g〉en

for any g ∈ VN , where VN is the finite dimensional vector space. Now if we define our projection

operator by

P̂ng = 〈en, g〉en

then Î can be written as

Î =

N∑
n=1

P̂n

Notation. Moreover, with this formulation, it is clear that

Â =

N∑
n=1

λnP̂n.
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Definition. Orthogonal projections are such that PnPm = δnmen〈em, ·〉. Specifically, in a Hilbert

space, an orthogonal projection is an idempotent linear map Pn : H → H such that for all x, y ∈ H

〈Pnx, y〉 = 〈x, Pny〉

We notice that projections are orthogonal when the eigenvectors are orthogonal (which is not always

the case!). Again, it is a well-known result of linear algebra that eigenvectors are always orthogonal

for symmetric operators (which Hermitian operators are).

Notation. Finally, for spaces X,Y , we introduce the following notation

B(X,Y )

to denote all bounded, everywhere defined operators from X,Y .

So far we have been looking at bounded operators, but unbounded operators are of immense importance

to quantum mechanics. Indeed, the theory of unbounded operators was developed in large part by von

Neumann to put quantum mechanics on a rigourous mathematical foundation. However, unbounded

operators are fairly difficult objects of study. They are often not part of any standard mathematics

curriculum, and although they are ubiquitous in physics, their study is often left to graduate students

looking for a challenging paper topic. Simply put,

Definition. An operator Â is unbounded if there are elements of H on which Â is not defined.

Finally, we will define the spectrum of unbounded operators in order to introduce Stone-von Neumann

spectral theory.

First, let Â be on operator on Â : X → Y, two Banach space.

Definition. An operator Â is invertible if and only if Â−1 ∈ B(Y,X ).

Definition. A resolvent set of Â is given as

ResÂ := {z ∈ C : zÎ −A is invertible}

Finally,

Definition. The spectrum of an unbounded operator Â is given as

SpecÂ := C\ResÂ

It should be clear by this definition of the spectrum, that the set of all eigenvalues of Â, which we call

the point spectrum and denote with SpecpÂ is a subset of the spectrum of Â.

Theorem 12. Let T : H → H be a self-adjoint operator on a separable Hilbert space with domain

Dom(T ), which we will denote by D. Then there exists a finite measure space (M,µ), a unitary

operator U : H → L2(M,µ), and a real valued function f : M → R such that

• ψ ∈ D ⇐⇒ f · (Uψ) ∈ L2(M,µ)
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• If ψ ∈ D, then U(T (ψ)) = f · U(ψ), i.e.

U(T (ψ))(x) = f(x)U(ψ)(x)

almost everywhere in M .

When considering orthogonal projections, we can generalize Thm 9, which applies to a finite dimensional

vector space, to an infinite-dimensional Hilbert space when considering infinite-dimensional operators

of the completely continuous type.

Theorem 13. To every self-adjoint operator Â on a Hilbert space H, there corresponds an operator-

valued function E(λ) such that

1. E(λ1)E(λ2) = E(λ̄); λ̄ = min{λ1, λ2};

2. lim
λ→−∞

E(λ) = 0, lim
λ→∞

E(λ) = I;

3. I =
∫
R dE(λ);

4. A =
∫
R λdE(λ).

E(λ) is called a resolution of the identity belonging to Â. The set of points at which E(λ) is non-

constant is the spectrum of Â. For all λ, E(λ) commutes with Â and with any transformation which

commutes with Â.

A far more in-depth discussion of the spectral theory that plays a central role in classical and quantum

mechanics can be found in [4].

To get a rough idea of what this alteration involves, we will consider the Stieltjes integral, and then

an operator-valued function E(λ).

Definition. The Stieltjes integral is a generalization of the Riemann integral, which we define for a

function f on [a, b] as ∫ b

a

f(x)dg(x) = lim
N→∞

N∑
i=1

f(x∗i )[g(xi+1)− g(xi)]

with xi ∈ P, where P is a partition of the interval [a, b]. Note that g is not required to be continuous!

Now let us define an operator valued function

E(λ) =


0 λ ≤ λ1

ν∑
n=1

Pn λν ≤ λ < λν+1 ν = 1, . . . , N − 1

N∑
i=1

Pn λ ≥ λN

We see that all four properties of the operator valued function described in the Spectral theorem are

satisfied. The following proof is courtesy of [4]

Proof. Let {λn} be the corresponding eigenvalues to the eigenfunctions {fn}.

It follows immediately if λa < λ1 that

E(λa)E(λb) = 0
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Without loss of generality, let λa < λb < λN [Fuller]. So now, consider without loss of generality

that λ1 ≤ λa < λν ≤ λb. Then,

E(λa)E(λb) =

ν1∑
n=1

Pn

ν2∑
m=1

Pm =

ν1∑
n=1

ν2∑
m=1

PnPm =

ν1∑
n=1

ν2∑
m=1

δnmen〈em, ·〉 =

ν1∑
n=1

Pn = E(λ̄)

1.2. First, it is clear that

lim
λ→−∞

E(λ) = 0

by definition. Now we also see that for N dimensional vector space V,

lim
λ→∞

E(λ) =

N∑
n=1

Pn = I

3. Next, we see that the definition of the Stieltjes integral also us to write

∫ λ

−∞
dE(λ) =

ν∑
n=1

Pn

if λ ∈ [λν , λν+1). Since the contributions to the integral come from the points at which E(λ)

changes discontinuously, by construction at each such point λn must be an eigenvalue of A. Thus,

in the limit, we pick up each projection operator onto the one-dimensional subspace of V spanned

by en. In this way

I =

∫ ∞
−∞

dE(λ)

4. This follows immediately from (3) and the formulation that A =
N∑
i=1

λPn.

The virtue of this formulation is that it allows us to imagine the limit E(λ) tending to a continuous

operator-valued function, and thus to a ”continuous spectrum”. In practice, since continuum cannot

be observed, for those eigenspaces with theoretically continuous eigenvalues, physicists make us of the

Stieltjes integral.

2 A Formal History of the Development of Quantum Me-

chanics

”The most incomprehensible thing about the universe is that it is comprehensible.”- Albert

Einstein, ”From Physics to Reality” (1936)
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2.1 The Buildup of the Classical World: A Tale of Three For-

malisms

Although several schools of philosophy of the ancient Greeks conjectured that the universe

fundamentally obeyed mathematical laws, in particular, those of geometry, their surviving

descriptions are never formal. Rather, these schools merely speculated about the fundamen-

tal character of the universe, likening the physical world to metaphors of flow and fire, cubes

and spheres. Plato had the universe nested inside concentric spheres, with the outer most

corresponding to a creative intelligence. Even the physics of Aristotle is not quantitative,

but qualitative, reducing the world to four causes. For most of human history, it appeared

to philosophers that the intelligibility of the world was that which we could describe with

natural language, made rigourous only by geometric analogies.

The decisive leap from an Aristotlean description of the physical world, the one which pre-

dominated the Western world through the continued intellectual patronage of the Scholastic

monasteries and the endorsement of the Catholic church, was brought about by the develop-

ment of the calculus by Isaac Newton and Gottfried Leibniz. It was Isaac Newton’s linking

calculus to the study of the physical world and his assertion that the world could be made

comprehensible by mathematics, an assertion that arguably has been met with great success,

that finally began to lift mathematics above theology and physics above natural philosophy.

Although we take for granted now that we can describe the physical world by mathematical

functions, it was a profound paradigm shift counterintuitive to the received wisdom of how

the world worked at the time.

Moreover, as Einstein himself noted, the most incomprehensible thing about the universe is

that the rigourous mathematical description afforded by Newton’s approach to physics actu-

ally works. Whereas before Newton we had descriptions of objects falling to the earth due

to their ”essential” nature, we now understand that there is a mathematical relationship be-

tween bodies, and this relationship could be understood without appealing to the unknowable

essences and substances of a particular body. Before we only had philosophical speculation;

now we had quantifiable observation, and with it a framework for predicting the future. The

world became comprehensible. The universe became likened to an elaborate clock.

2.1.1 The Dawn of Mathematical Physics: Newtonian Formalism

Although astronomers from antiquity up until the Renaissance relied on geometry to formally

describe their observations, the emerging study of analytic geometry added new levels of

rigour to their works. For a generation of European researchers, among them Kepler, Hooke,

and Isaac Barrow, this new mathematical formalism describing classical geometric concepts

developed in tandem with their own physical research. For instance, the relationship between

the study of large astronomical bodies, and the instruments which enabled refined study of

them fueled the development of optical theory. Specifically, Isaac Barrow’s application of
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analytic geometry to study the reflection and refraction of light would influence his most

renowned pupil, Isaac Newton2.

Within Newton’s Philosophiae Naturalis Principia Mathematica, he proposed three laws of

motion that completely describe the behaviour of any particle body. These laws were argued

for along the lines of an implicit Euclidean geometry, and for over two centuries, Newton’s

second law:

~F = m
∂2

∂t2
~x =

d

dt
~p (2.1)

was the picture of how the world evolved. That is, Newton proposed that the world was such

that the net force acting on an object was the rate of change of its linear momentum3 in an

inertial reference frame.

The second law implies that the evolution of the material world is fully determined by the

force of motion and initial conditions. As it so happened, classical mechanics which devel-

oped from this law, developed alongside mathematical analysis, through the works of Euler,

Lagrange, Laplace, and Hamilton, and much empirical observation. For two centuries, this

picture corresponded both with observation and what seemed to be our intuition.[1]

In the Newtonian picture of the world, when the force ~F (~x) acting on a body could be ex-

pressed in terms of a scalar function V (~x) as ~F (~x) = −∇V (~x), the force is called a conserved

force and the function V is called the potential energy, or simply, the potential. This formu-

lation of the energy of a conserved force is given by

E =
m

2

 d

dt
~x

2

+ V (~x) =
m

2
~v2 + V (~x) (2.2)

where the function (2.2) describes energy as the sum of kinetic and potential energy, respec-

tively.

When ~F is a conservative force, both mathematically, and for most observable scales, it was

found that (2.2) is conserved, as can be seen

dE

dt
=
∑
i

mdxi
dt

d2xi
dt2

+
∂V

∂xi

dxi

dt

 =
∑
i

md2xi

dt2
+
∂V

∂xi

 dxi

dt
= 0

One useful example of a conservative force is the simple harmonic oscillator, where the po-

tential is given as V (x) = 1
2
kx2 which yields the force F (x) = −kx, where k is a constant

coefficient.

Another example of the Newtonian formalism is that of a free particle. This is a particle

where no external force is acting on the particle, and so it’s evolution is entirely determined

2Although Isaac Barrow was the one who proved the fundamental theorem of calculus, Newton and Leibniz are generally both credited
with developing calculus.

3In this case, linear momentum is a vector value denoted ~p = m~v = m d
dt
~x(t), where v is the velocity of a particle given by a position

mapping ~x(t), and m is mass, as usual.
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by the equation for motion. Explicitly V (~x) ≡ 0 and

~F = m
∂2

∂t2
~x = 0⇒ p = m

∂~x

∂t
= C

for some constant C. That is, an object moves in a straight line unless otherwise interrupted.

2.1.2 Lagrangian Formalism and The Euler-Lagrange equation

Newton’s formalism of vector equations presupposed an orthogonal coordinate system which

we now associate with Euclidean space. However, several difficulties with Newton’s original

formulation, such as analyzing the global properties of a system or handling constraints given

the formulation of motion as a second order equation, led to two reformulations of classical

mechanics, which in turn sowed the seeds for quantum mechanics. The first of these formalisms

belongs to Lagrange.

Lagrange wished to consider a system whose state is described by N parameters drawn from

some configuration space M (which later became identified in the abstract as a manifold).

For a generalized coordinate q(t) ∈ M , t ∈ [ti, tf ], and each coordinate has an associated

generalized velocity defined as

q̇ =
dq

dt
.

Definition. Action is a functional S, which takes given trajectories q(t) of a particle satisfying

conditions

q(ti) = qi

q(tf ) = qf

with S[q, q̇] ∈ R, defined by

S[q, q̇] =

∫ tf

ti

L(q, q̇) dt (2.3)

The Lagrangian function L(q, q̇) in (2.3) relates these parameters and satisfies the principle of

least action, which claims that the physically realized trajectory corresponds to the extremum

of the functional.

In practice, Lagrangian functions are chosen satisfying the principle of least action. This

requires that L is a twice-differentiable function for all arguments. What is remarkable about

the Lagrangian formalism is that allows us to derive Newton’s second ’law’. This is remarkable

because while Newton asserted his law’s based off of observation, Lagrange’s (and Hamilton’s)

formalism derived the laws a priori from a mathematical formalism of optimality.

When deriving Newton’s law, it is easier to write this principle in a local form as a differential

equation (which in fact, allows us to derive Newton’s second law). But first, it will be useful

to remind the reader of the following definitions:

Definition. Extrema are either maxima or minima of a given functional, and a functional

S[f ] is said to have an extremum with respect to elements f of a given function space defined
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over a given domain if

∆S = S[g]− S[f ]

have the same sign for all g in an arbitrarily small neighborhood of f.

Definition. The variational derivative relates the change of a functional J to the change in

a function f by an arbitrarily small function denoted δf . Given configuration space M (a

manifold representing functions ρ) and a functional J defined by

J : M → k

where k is either the real or complex field, then we formally define the variational derivative

of J [ρ] as

δJ

δρ
=

∫ δJ

δρ(t)
φ(t) dt = lim

ε→0

J [ρ+ εφ]− J [ρ]

ε
=

[
d

dε
J [ρ+ εφ]

]
ε=0

(2.4)

where εφ is the variation of ρ and φ is an arbitrary differentiable function.

Incidentally, in Banach spaces (and thus Hilbert spaces), the variational derivative in fact

becomes the Fréchet derivative.

Definition. The variation or differential of a functional J is defined as

δJ =

∫ δJ

δρ(t)
δρ(t) dt (2.5)

where δρ = εφ is the variation of ρ.

Given these definition, suppose that q is a path which is an extremum of S. Let δq(t) be a

variation of q such that δq(ti) = δq(tf ) = 0. Furthermore, for δq = ερ, let δq = ερ and all its

derivatives through the econd order be continuous functions on t, ε.

Now recall that a necessary, but not sufficient condition for a minimum is that a function

vanishes in the first derivative, and so we have

dS

dε

∣∣∣∣∣∣
ε=0

= 0

and so we find

δS =

∫ tf

ti

dL(q + δq, q̇ + δq̇)

dε
dt

=

∫ tf

ti

 ∂L

∂(q + δq)

d(q + δq)

dε
+

∂L

∂(q̇ + δq̇)

d(q̇ + δq̇)

dε

 dt

=

∫ tf

ti

∂L

∂(q + δq)

d(q + δq)

dε
+

∂L

∂(q̇ + δq̇)

d

dt

d(q + δq)

dε

 dt
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And now we integrate the second term by parts, finding:

δS =

∫ tf

ti

∂L

∂(q + δq)

d(q + δq)

dε
dt+

d(q + δq)

dε

∂L

∂(q̇ + δq̇)

∣∣∣∣∣∣
tf

ti

−
∫ tf

ti

d(q + δq)

dε

d

dt

∂L

∂(q̇ + δq̇)
dt

as δq(ti) = δq(tf ) = 0⇒
dqi

dε
=
dqf

dε
= 0 at ti, tf


=

∫ tf

ti

∂L

∂q

dq

dε
dt−

∫ tf

ti

dq

dε

d

dt

∂L

∂q̇
dt

=

∫ tf

ti

∂L

∂(q + δq)

d(q + δq)

dε
−
d(q + δq)

dε

d

dt

∂L

∂(q̇ + δq̇)
dt

=

∫ tf

ti

 ∂L

∂(q + δq)
−

d

dt

dL

d(q̇ + δq̇)

 d(q + δq)

dε
dt

And now, by requiring δS to be minimized at ε = 0, we find

0 =
dS

dε

∣∣∣∣∣∣
ε=0

=

∫ tf

ti

 ∂L

∂(q + δq)
−

d

dt

dL

d(q̇ + δq̇)

∣∣∣∣∣∣
ε=0

d(q + δq)

dε

∣∣∣∣∣∣
ε=0

dt

=

∫ tf

ti

∂L
∂q
−

d

dt

∂

∂q̇

φdt

and since φ is an arbitrary twice, differentiable function, it follows

∂L

∂q
−

d

dt

∂

∂q̇
= 0 (2.6)

Physically speaking, the result that δS = 0 follows from our hypothesis that q yields an

extremum of action S. Since this holds true for any slight perturbation of q, we obtain the

Euler-Lagrange equation (2.6) as the integrand must vanish.

Next, we introduce the concept of generalized momentum pk conjugate to our coordinate qk

defined by

pk =
∂L

∂q̇k
(2.7)

and now we see that the Euler-Lagrange equation can be expressed as

dpk

dt
=

∂L

∂qk
.

This change of expression allows one to find the Lagrangian in the classical mechanics of a

particle.To see this, consider the arbitrary Lagrangian

L =
1

2
m~̇q2 − V (~q) (2.8)
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and substitute this into (2.4). We see then that the Lagrangian in (2.6) becomes

mq̈k +
∂V

∂qk
= 0 (2.9)

Now consider the soon to be all too familiar example of the simple harmonic oscillator.

Example. Consider the following Lagrangian

L(q, q̇) =
1

2
mq̇2 − 1

2
kq2

The reader can derive the Newtonian formulation

mẍ = m
d

dt
ẋ = −kx

by considering that our generalized coordinate q ↔ x, where x is the real line in R.4

Lagrange’s formalism allows for analysis of symmetries, and also allowed physicists to take

into account constraints acting on particle bodies. More importantly, it still finds application

today by providing the formalism for the path integral formation of quantum theory.5 In

short, the practical successes of the Lagrangian formalism come from its transformation of its

inputs into a second-order ordinary differential equation. However, even this formulation has

some limitations.

2.1.3 Hamiltonian Formalism

Hamilton’s formulation of mechanics can be thought of as restatement of Lagrange’s formu-

lation with an explicit symplectic structure. The Hamiltonian formalism predicts the same

outcomes as the Lagrangian formulation. However, this would be to ignore that it gives the

equations of motion as first order in the time derivative, and thus it is a formulation that

allows physicists to study flows in phase space.

To find a Hamiltonian, H, we first start with a given Lagrangian L, and through a Legendre

transformation of variables find

H(q, p) ≡
∑
k

pk q̇k − L(q, q̇).

For this transformation to be defined, the Jacobian must satisfy

det

∂pi

∂q̇j

 = det

 ∂2L

∂q̇iq̇j

 6= 0

4Hint: Consider
d

dt
L and note that the principle of least action implies that this L corresponds with an extremum.

5The interested reader can check out Richard Feynman’s work on this, as it is both mathematically rigourous, and eminently readable.
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where the space of (qk, pk) is the phase space of the system.

Now consider an infinitesimal change in the Hamiltonian by δqk, δpk:

δH =
∑
k

δpk q̇k + pkδq̇k −
∂L

∂qk
δqk −

∂L

∂q̇k

 =
∑
k

δpk q̇k − ∂L

∂qk
δqk

 .

It follows

q̇k =
∂H

∂pk

and

∂H

∂qk
= −

∂L

∂qk
.

What is exceptionally about Hamilton’s formulation is that it lends itself to description by

commutation relations [A,B] and brackets {A,B}

Definition. A Lie Bracket is a commutation relation [A,B] which satisfies the following

1. (linearity)

[A, c1B1 + c2B2] = c1[A,B1] + c2[A,B2]

2. (skew-symmetry)

[A,B] = −[B,A]

3. (Jacobi Identity)

[[A,B], C] + [[C,A], B] + [[B,C], A] = 0

We see that for two functions A(q, p) and B(q, p) defined on the phase space of a Hamiltonian

H, that we can define a corresponding Lie bracket known as the Poisson bracket, which is

given by

{A,B} =
∑
k

 ∂A

∂qk

∂B

∂pk
−
∂A

∂pk

∂B

∂qk

 .

Of great importance are the fundamental Poisson brackets,

{pi, pj} = {qi, qj} = 0 (2.10)

and

{qi, pj} = δij (2.11)

which we leave to the reader to verify. The power of Hamilton’s formalism and the Poisson

bracket in particular is that we can describe the time development of a physical quantity

A(q, p) as

dA

dt
=

∑
k

 dA

dqk

dqk

dt
+
dA

dpk

dpk

dt


=

∑
k

 dA

dqk

∂H

∂pk
−
dA

dpk

∂H

∂qk


= {A,H}
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Thus, we see that Hamilton’s equations of motion can be written as

dpk

dt
= {pk, H},

dqk

dt
= {qk, H} (2.12)

Finally, we note that if {A,H} =
dA

dt
= 0, then the quantity A is conserved.

Now let us revisit the simple harmonic oscillator again, this time formulated as a Hamiltonian

Example. Recall that the Lagrangian before was given as

L(q, q̇) =
1

2
(mq̇2 − kq2)

Now, we should make the following substitution k = mω2, where ω represents angular mo-

mentum. Then the Lagrangian becomes

L =
1

2
m(q̇2 − (ωq)2)

And thus, the Hamiltonian can be written as

H(q, p) = pq̇ − L(q, q̇) =
p2

2m
+

1

2
mω2q2

Furthermore, the reader can verify that Hamilton’s equations of motion for the simple har-

monic oscillator are

d

dt
p = −mω2q

d

dt
q =

p

m

2.2 The Breakdown of the Classical World: Physicists See the

Light

Empirical observations, and the development of the Lagrangian and Hamiltonian formalism

consistently verified the predictions made by this second law until the late 19th century. Ini-

tially, with the emergence of Maxwell’s formulation of electromagnetism, it was assumed that

the Newtonian picture was merely incomplete. Maxwell’s formulation led many to conclude

that light had a maximum velocity, and that it travelled as a wave. However, as further

experimentation and observation was performed under electromagnetic framework, whether

on bodies of very small or very large mass, the model given of classical mechanics began to

breakdown in many spectacular and bizarre ways.

As it so happened, the abstract mathematical tools that developed in analysis and differen-

tial geometry would help resolve the discrepancies between the classical picture of the world

given by the second law, and what we began observing. Moreover, it is remarkable that the

revolution in physics on both sides can in large part be attributed to the work of a single

man, Albert Einstein, and his investigations into the properties of light. While he is more
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well known for his theory of relativity, addressing the universe at a large scale, his early work

for which he won his Nobel prize (and the work relevant to this paper) on the photo-electric

effect argued that light behaves as both a particle and a wave.

Physical theories describing light have alternated throughout the history of mathematics be-

tween those which had that light was a particle and those that described light as a wave.

Isaac Newton first proposed the corpuscular theory of light, which was held to be the model

of the propagation of light until the 19th century. Then, starting with Young’s double slit

experiment in 1803, it was established that light exhibited a clear wave interference pattern.

Throughout the 19th century, light was held to be a wave which would strike a particle, and

that it was the intensity of light striking a surface which determined the energy of the electron

emitted from the surface. The only thing missing experimental verification was the medium

which light was propagating through as a wave.6 The first chinks in this wave theory came

with the negative experimental results of the Michelson-Morley experiment regarding the pro-

posed medium that light was passing through. However, Max Planck’s work attempting to

explain black body radiation, the type of electromagnetic radiation surrounding a body in

thermodynamic equilibrium, suggested that light waves could only gain or lose energy in finite

amounts related to their frequency. These finite amounts were named quanta

2.2.1 Planck Breaks The Universe Down

Since the middle of the nineteenth century, physicists had been investigating an idealized phys-

ical body called a black body, which absorbs all incident electromagnetic radiation regardless

of the frequency or angle of incidence. What they noticed is that a black body held at a

constant temperature emits electromagnetic radiation, which they called black body radiation.

The pioneering work of Kirchhoff, Stefan, Boltzmann, and Wien started with the observation

that the ’hotter an object’, the ’brighter the glow’ of an object. Physically speaking, when a

heated object is in equilibrium with light, the amount of light absorbed is equal to the amount

of light that is emitted, and so a black body absorbs all the light that hits it while emitting

a maximum amount of radiation.

Max Planck resolved this by introducing a formalism to describe black-body radiation that

was consistent with theoretical electromagnetism and theoretical thermodynamics, as well as

the emerging experimental data. Succinctly, Planck’s Law, for wavelength λ, and absolute

temperature T, can be given as

Bλ(T ) =
2hc2

λ5

1

e
hc

λkBT − 1
(2.13)

where kB is the Boltzmann constant, c is the speed of light, B is the spectral radiance, and h

was a new constant called the Planck constant. This law describes the unique spectral distri-

6The hypothesis was that light was passing through the luminiferous aether, which was first proposed by Huygens in 1678.
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bution for electromagnetic radiation in thermodynamic equilibrium. Although this description

could in part be accounted for by the formalism of classical mechanics, the introduction of h

had only a formal precursor without a physical referent.

This new universal constant was derived by Planck’s theoretical supposition that the distribu-

tion of electromagnetic energy could be described over different modes of several oscillators.

Planck’s hypothesis that the equations of motion for light could be described as a linear com-

bination of oscillators with finitely many characteristic frequencies was in part based off of

the emerging subject of statistical mechanics, as well as a heuristic approach of Boltzmann’s

to describe energy distribution by an arbitrarily small energy constant ε. Planck’s big break-

through was to realize that the constant in Boltzmann’s work was not merely a mathematical

formalism, but an actual quantity. In supposing that the total energy was distributed to

each oscillator by an integer multiple of a definite physical unit of energy characteristic of the

respective oscillation frequencies ν, Planck was able to reconcile observation with theory. By

relating the minimum amount of energy in any given system to this constant h, the energy of

a system could now be given by

E = hν (2.14)

This was the birth of quantum mechanics, as energy could no longer be thought of as existing

in a continuum where ε > 0. Rather, there is a lower bound

ε > h > 0

Building off Planck’s work, Einstein overturned the view that it was the intensity of light

which led to electron emission by mathematically proving that it is the frequency of light,

denoted ν, which determines the energy emitted. Einstein further showed that the intensity

of the light determines the number of electrons that are emitted. In doing so, he argued that

photons possess both their well-known wave behaviour, while also exhibiting a clear particle-

like behavior. Specifically, Einstein predicted that the energy of individual ejected electrons

off of a surface increase linearly with the frequency of light. For this work, experimentally

verified in 1914, Einstein won his Nobel Prize.

What Einstein showed was that Planck’s relation (2.14)

E = hν.

implies that a photon must have a frequency at or beyond the threshold frequency to have the

energy needed to eject a single electron. This is the so called photo-electric effect. Subsequent

work, most of all by deBroglie, demonstrated was that the momentum of a photon can be

described as

p =
h

2π

2π

λ
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where λ is the wavelength of light. What Planck and Einstein argued, and what has been

empirically verified since, is that the reduced Planck’s constant ~ :=
h

2π
, is the universal

constant describing energy quanta. It is the scale where quantum effects are manifested.

Setting k = 2π
λ

and ω = 2πν, we can elegantly describe the energy and momentum of photons,

as well as other quanta, by the deBroglie relations:

E = ~ω (2.15)

p = ~k. (2.16)

For a sense what these variables describe, ω is called the angular frequency, or sometimes

the angular velocity of a quanta, k is called the angular wave number, and it is inversely

proportional to wavelength, λ.

2.2.2 Double Slit Experiment

Einstein’s wave-particle duality account of light confounded physicists who had come to view

light as exhibiting a wavelike behaviour. Notably, this behaviour was established by Thomas

Young in 1803 with his double-slit experiment. In this experimental setting, a beam of light

passes through two narrow parallel slits and is projected onto a screen, creating an interference

pattern which corresponds to the interference pattern of waves.

However, it isn’t just light that behaves like both a particle and a wave. More mysteriously,

electrons, the subatomic particles that had been thought to orbit nucleus of atoms at the turn

of the twentieth century were also observed to behave in a wavelike manner. Although this

will be a simplified account of the double slit experiment, it should clarify the experiment,

the observed phenomena, and the mathematics.

The experiment started as a lab accident. Scientists were firing an electron gun at a block

of Nickel crystal when the evacuated chamber exploded. As part of cleaning up the lab for

further experiments, the scientists cleaned the Nickel crystal by heating it up to remove the

foreign contaminants. When they started firing the electron gun again, because the structure

of the crystal had been altered, they scientists observed that the electrons exhibited a new

pattern of behaviour, one which violated the classical assumptions of an electron path.[1]

Rather than following a clear, Newtonian trajectory, the scientists witnessed interference

patterns suggestive of a wave. This raised new questions about what an electron was exactly.

Given the observed interference pattern, the natural question to ask was: are individual

electrons exhibiting a wavelike motion?

The result of these experiments was that the electron was no longer seen to have an orbit

around a nucleus described by q, with momentum p = mv as a function of time, as in the case

of classical mechanics. Instead, it was seen that physicists would have to reconcile wavelike
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behaviour of a particle path with wave-momentum described by

p =
h

λ
= ~k

2.3 Heisenberg’s Matrix Mechanics

The first logically consistent attempt to incorporate Einstein’s groundbreaking work with the

vast body of new experimental observations in a new physical model comes from the work

of Heisenberg, and a subsequent collaborations with Born and Jordan 7. Heisenberg’s break-

through came as he was studying the problem of calculating spectral lines of the hydrogen

atom by working within Bohr’s model describing quantum jumps. His startling observation

was that describing atomic systems in terms of observables saw that the classical commuta-

tivity of variables p, q where

pq = qp

no longer had empirical support. His big insight was that the physical quantities which

were measured were not variables, but rather, corresponded to matrices. Working with the

experimental data on hydrogen spectroscopy, and treating position and momentum as matrices

q̂ and p̂ respectively, Heisenberg assumed the following commutation relation

[p̂, q̂] = −i~I

where I is a unit matrix.8 This formulation corresponded with the values of the frequencies

and the strengths of the spectra of the hydrogen atom.9

Heisenberg’s formulation built on the premise that all physical observables (which are mea-

surable material phenomena such as energy, position or momentum), could be represented

by Hermitian matrices, and indexed by energy levels. In turn, the eigenvalues of the matrix

of an observable correspond to the possible values that an observable may take, while an

eigenvector was the state of the system at measurement.

This formulation was quite spooky, as it implies that the physical world existed in multiple

states simultaneously, but that observation, in this case, measuring a phenomenon, would

collapse the state of a physical system from all the possible values it might take to the one

that was observed! What makes this spooky is that in practice, most observables do not

share eigenvectors, and so most observables cannot be measured simultaneously. The biggest

leap yet from Newton’s world was that position p̂ and momentum q̂ do not share common

eigenvectors, and cannot both be known at the same time (we will explore why this is the

case rigourously in section 3.)

7The seminal papers are ”On A Quantum Interpretation of Kinematical and Mechanical Relations” by Heisenberg; ”On Quantum
Mechanics”, from Born and Jordan; and ”On Quantum Mechanics II” from Born, Jordan, and Heisenberg.

8Strangely enough, Schrödinger was able to show that p→ −i~
d

dx
and x→ x, which would yield this commutation relation.

9Spectroscopy gives observational data on the transition at the atomic level arising from the interaction of atoms with light quanta.
The experimentalists following Bohr believed that only what was measurable by spectroscopy should appear in a theory of quantum
mechanics. In this case, energy level and intensity of an emission could be measured, but not location!
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The picture of the world given by matrix mechanics, known as the Heisenberg picture, can be

succinctly described as noting that observables are time dependent while the state-vectors,

are time independent. Heisenberg formulated that for an observable Â where the Hamiltonian

H describing the total energy of the quantum system being observed does not vary with time,

the time-evolution operator for the observable could be written as

U(t) = e
−iHt

~ (2.17)

and so the time evolution of an observable could be given by

A(t) = U∗ÂU = e
iHt
~ Âe

−iHt
~ (2.18)

And thus

d

dt
A(t) =

i

~
He

iHt
~ Âe

−iHt
~ + e

iHt
~
∂Â

∂t
e
−iHt

~ −
i

~
e
iHt
~ A ·He

−iHt
~

=
i

~
e
iHt
~ (HA−AH)e

−iHt
~ + e

iHt
~

∂Â
∂t

 e
−iHt

~

=
i

~
[H,A(t)] + e

iHt
~

∂Â
∂t

 e
−iHt

~

=
i

~
[H,A(t)] +

∂A(t)

∂t

= =
i

~
[A(t), H] +

∂A(t)

∂t

And so, the Heisenberg equation of motion,

d

dt
A(t) = −

i

~
[A(t), H] +

∂A(t)

∂t
(2.19)

can be realized as a commutation relation. And moreover, for operators Â which are not time

dependent
d

dt
Â = − i

~
[Â,H] (2.20)

Thus, we see is that Hamilton’s equations of motion have become

dq̂i
dt

= − i
~

[q̂i, H]

dp̂i
dt

= − i
~

[p̂i, H]

Finally, Heisenberg’s picture of motion preserves classical mechanics given the following cor-

respondence between the commutator [A,B] and the Poisson bracket {A,B}.

i~{A,H} ↔ [A,H].
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Now, this may seem a bit too abstract, so let us walk through the motivating example for

this formulation: the spectra of the energy operator on a simple harmonic oscillator:

Example. Heisenberg’s formulation describes the task of finding the allowed energies of a

system, denoted En, is equivalent to the task of finding the corresponding eigenvalues and

eigenvectors of an operator. In the case of the single dimensional harmonic oscillator, the

eigenvalues can be found by considering the following two operators, dubbed the annihilation

and creation operators, for reasons we shall soon see:

â := (2m~ω)−1/2(xmω + ip)

â† := (2m~ω)−1/2(xmω − ip)

It should be clear that â† is defined as the conjugate transpose of â, and moreover, their

product is related to the Hamiltonian for a harmonic oscillator

H =
p2

2m
+

1

2
mω2x2

as follows

ââ† = (2m~ω)−1(xmω + ip)(xmω − ip)

= (2m~ω)−1[x2m2ω2 + p2 + imω(px− xp)]

= (~ω)−1(H +
iω

2
[p, x])

= (~ω)−1(H +
~ω
2

)

And so we can now express the Hamiltonian of this system as

H = ~ω(ââ† − 1

2
)

Similarly, the reader can verify that

â†â = (~ω)−1

H − ~ω
2


and thus

H = ~ω(â†â+
1

2
)

with the consequence that

[â, â†] = ââ† − â†â = I

We also leave it to the reader to verify that

[H, â] = −~ωâ

and

[H, â†] = ~ωâ†
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Now, physically speaking, a simple harmonic oscillator can only have non-negative real energy

values. So, when considering this Hamiltonian, we should find that there are only nonnegative

real corresponding eigenvalues.

Assuming this result, let E0 denote the lowest energy level allowed by the system, and let ψ0

be the corresponding eigenvector. Then

Hψ0 = E0ψ0

and thus

âHψ0 = E0âψ0.

Now, by the commutation relations we established above for H and a, we find

âHψ0 = (Hâ+ ~ωâ)ψ0 = E0aψ0 ⇒ Hâψ0 = (E0 − ~ω)âψ0

By our assumption that E0 is the lowest allowed eigenvalue, it follows that this must be a

trivial solution, and so âψ0 ≡ 0. Now let’s apply a† to this. Now we find

â†âψ0 = (~ω)−1

H − ~ω
2

ψ0 = 0⇒ Hψ0 =
~ω
2
ψ0 ⇒ E0 =

~ω
2

Now we have finally seen our first quantized, energy value. We see that the ground state of

this system must be an energy value of
~ω
2

.

Additional application of the â† operator gives us a larger energy value, as seen by

â†Hψ0 = (Hâ† − ~ωâ†)ψ0 = E0â
†ψ0 ⇒ H(â†ψ0) = (E0 + ~ω)â†ψ0

and so E0 + ~ω =
3~ω

2
is the corresponding energy level for â†ψ0. This is why â† is called the

creation operator.

We leave it to the reader to figure out why a is called the annihilation operator, and moreover,

to verify that

En = (n+
1

2
)~ω

and

ψn = cn(â†)nψ0

where cn is a constant that normalizes ψn. (We leave it to the reader to verify that for

â†ψn =
√
n+ 1ψn+1 and that âψn =

√
nψn−1

2.4 Schrödinger’s Wave Mechanics

While Heisenberg, Born and Jordan were the first physicists to publish a logically consis-

tent model of quantum mechanics that corresponded to the experimental work in atomic

spectroscopy, their formulation was highly controversial. Matrices were viewed as abstract

objects belonging to pure mathematicians by the physics community at large, and the focus
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on discrete state jumping and state equation collapse upon observation rather than the wave-

particle duality of the Einstein-Planck mold suggested a highly bizarre world, too strange to

be a serious candidate for quantum mechanics.

Unfortunately for those physicists, desperate to hold onto the determinism of classical me-

chanics, the world really is bizarre. The task of resolving the strangeness of the world was

not helped by Erwin Schrödinger, who further refined the wave-particle duality of subatomic

particles.

Building off the description of the momentum of a photon

p = ~k

researchers such as de Broglie showed that assumed that matter waves propagate along with

their particle counterparts, the subatomic particles would form standing waves, where only

certain discrete rotational frequencies about the nucleus would be allowed. These quantized

orbits corresponded with the observed discrete energy levels. What remained to be discovered

was a wave equation describing the particle behaviour.

Recall that wave equations are hyperbolic partial differential equations whose solutions are

functions. They are common throughout mathematical physics, and are often derived from

other, earlier physical laws. This was not to be the case for Schrödinger’s equation, which

can be simply expressed in the time-independent case as

i~
∂

∂t
Ψ = ĤΨ = EΨ (2.21)

where ψ is a wave equation satisfying a Hamiltonian corresponding to the observable in

question.

The basis for the equation is the observed energy of a particle followed from Einstein’s work

on the photo-electric effect, where energy is a function of angular frequency

E = ~ω,

the assumed principle of energy conservation, and de Broglie’s doctoral work which hypothe-

sized that any particle could be associated with a wave, and that the momentum corresponded

to the wavelength of a wave, i.e. the familiar

~p = ~~k.

Realizing that ~ could be a natural unit, Schrödinger saw the underlying identities in the

earlier equations, wherein energy and time are related, as are space and momentum. Then,

in an insight without precedence in the physical research, Schrödinger saw that using these

identities, one could describe the phase of a plane wave as a complex phase factor, i.e. in the
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one-dimensional case with normalizing constant A,

Ψ = Aei(
~k·~q−ωt) = Aei

(~p·~q−Et)
~ (2.22)

Then, in considering the first order partial derivatives of this wave, with respect to time

∂Ψ

∂t
= −

iE

~
Aei

(~p·~q−Et)
~ = −

iE

~
Ψ

and with respect to space

∇ψ =
i

~
~pAei(

(~p·~q−Et)
~ = i~pψ

Schrödinger found

−i~∇Ψ = ~pψ ⇒ −
~2

2m
∇2ψ =

1

2m
~p · ~pΨ

and

∂

∂t
Ψ = −

iE

~
Ψ⇒ i~

∂Ψ

∂t
= EΨ.

Thus, in the time-independent case of a single, non-relativistic particle, the Hamiltonian can

be given as

Ĥ = −
~2

2m
∇2 + V (~q)

To illustrate the wave equation, consider the following two examples:

Example. First, consider the Hamiltonian for a free, non-relativistic particle with no poten-

tial energy in one dimension. Here, the Hamiltonian will be given as

Ĥ = −
~2

2m

∂2

∂x2

Then we are asked to solve

−
~2

2m

∂2

∂x2
Ψ = EΨ

We do so by considering the

Ψ(x, t) = Aeαxeβt

and so we find

∂

∂x
Ψ =

∂

∂x
(Ae(αx+βt))

= α(Ae(αx+βt))

= αΨ

⇒

∂2

∂x2
Ψ =

∂

∂x
α(Ae(αx+βt))

= α2Ψ
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Hence

ĤΨ = −
~2

2m
α2Ψ = EΨ⇒ α2 =

− 2mE

~2
⇒ α = i

√
2mE

~

In the particle view of the system, we have

E =
m

2
v2 =

p2

2m
⇒ α = i

p

~

and using the deBroglie hypothesis, generalizing the photo-electric effect, we find that

α = i
p

~
= i

~k
~

= ik

∂

∂t
Ψ =

∂

∂t
(Aeikx+βt)

= βΨ

Hence

i~
∂

∂t
Ψ = i~βΨ⇒ E = i~β ⇒ β =

− iE
~

= −ω

and thus we find that in the non-relativistic free particle case that the corresponding wave

equation is

Ψ = Aei(kx−ωt)

solves the wave equation. What’s more, we see that in a ’position’ basis, momentum in this

formulation can be described as

~p = −i~∇ (2.23)

When it comes to finding the permissible energy level’s the free system, we note that

Hψ = Eψ

allows us to derive

E =
(~k)2

2m
= ~ω

However, there is one MAJOR problem: the wave function ψ is NOT normalizable, and so

the theory tells us that a free particle with definite energy does not exist. To see this, notice

that ∫
R
ψ∗ψ =

∫
R
|ψ|2 = |A|2

∫
R
dx = |A|2(∞)

The failure of a free particle to have physical meaning does not mean it lacks use in the study

of quantum mechanics. Physicists use the separable solutions to the time independent case

when studying general solutions to the time-dependent Schrödinger’s equation. In practice,

when it is possible to use a discrete index, this can be found by considering the plane waves,

ψ(x) ≡ Ψ(x, 0). Then, if a discrete energy level is allowed {En} the Schrödinger wave equation
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implies that

Ψ(x, t) =
∑
n

Anψn(x)e
−iEnt

~ (2.24)

Moreover, in practice, when dealing with continuous spectra, which observationally fall into

countable partitions, this can be described by taking the limit of a linear combination over

a discrete index over arbitrarily small intervals. However, rather than consider a linear com-

bination over a discrete index, the general solution is found as an integral over a continuous

variable k, called the wave packet. The wave packet is given the form

ψ(x, t) =
1
√

2π

∫
R
φ(k)i(kx−

~k2
2m

t) dk (2.25)

The wave function can be normalized for an appropriate function φ(k), which can be found

by considering the time-independent free particle case,

ψ(x, 0) =
1
√

2π

∫
R
φ(k)eikx dk

and applying Plancheral’s formula (i.e., consider a Fourier transform)

Now onto a more sophisticated example.

Example. The solution to the equation

F = −kx = m
d2

dx2

can be given by the generalized solution

x(t) = A sin(ωt) +B cos(ωt)

where ω is the angular frequency of oscillation, defined here by ω =

√√√√ k

m
. The reader can

verify this.

Moreover, the potential energy is given as

V (x) =
1

2
kx2

in the classical case, while in the quantum case, the quantum potential of a harmonic oscillator

is given as

V (x) =
1

2
mω2x2.10

Solving this system via Schrödinger’s equation means solving

−
~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ

10Hopefully the reader sees both the similarity to the classical case and understands the reasoning for why we describe the potential
as a function of angular frequency.
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We can simplify this solution method by introducing the dimensionless variable

ξ =

√√√√mωx2

~

and by expressing energy in terms of
~ω
2

units, so that

E′ =
2E

~ω
.

Then Schrödinger’s equation reads as

d2ψ

dξ2
= (ξ2 − E′)ψ

We leave deriving the allowable energy states to the reader (Hint: EN = (N + 1
2
)~ω. First

consider ψ as ξ → ±∞. Can you find a recursion relationship?).

Even though there were now two competing models, it was clear: particles no longer had de-

termined properties as described by classical mechanics, where position and momentum were

known to follow Newton’s laws. Now, measuring a particle meant observing a result drawn

from a probability distribution. Even if we knew the wave function governing a particle body,

the result of a measurement would always remain uncertain. The world became uncertain.

It is worth taking the time to point out that with this wave formulation of an electron path,

physicists first believed that the wave equation was describing the electron as being a spread-

out entity. That is, the wave equation described an electron smearing out in space by a

wave density function. However, this is incorrect. Experiments and further refinements to

the theory of quantum mechanics have verified that the electron is a point-like particle. It

was Max Born who resolved this conundrum by describing a wave satisfying Schrödinger’s

equation as a probability wave which describes where the particle is spatially expected to be,

as well as implicitly describing the expected velocity of the particle. With this interpretation

of the wave function ψ as a probability density function, the greater the amplitude of a re-

gion of the wave, the greater the probability that a particle would be within that bounded

region of space. Consequently, classical mechanics is simply verboten at the quantum level of

Planck lengths since electrons are no longer seen to follow fixed trajectories described by the

Newtonian position function x(t). Instead, electrons and other quantum bodies, are part of

a dynamical probability wave.

2.5 Dirac’s Quantum Mechanics

Schrödinger’s equation had numerous startling consequences, as it struck the death blow to

classical mechanics once and for all. What’s more, because of its linearity, solutions could be
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combined to derive new solutions, i.e.

{ψkj = ei(kjx−ωjt)} 7→
∑
kj

cje
i(kjx−ωjt)

Now, if given a wave function ψ ∈ L2(Ω), there exists another function φ(k) which would

solve the equation such that

ψ(x, t) =
1
√

2π

∫
Ω

φ(k)eikx dk

and

φ(k) =
1
√

2π

∫
Ω

ψ(x, t)e−ikx dx.

This can be recognized as the Fourier transform. What is quite astonishing about this is

that φ(k) has a physical meaning: φ(k) yields the probability that a particle has momentum

p = ~k! The abstract spaces representing position and momentum are respectively linked via

a Fourier transform. In fact, this would entail that not only would a particle have more than

one possible position, but that at each position it has more than one momentum.11

By 1927, quantum mechanics was faced with startling theoretical difficulties. There were two

formulations which yielded the same results, were logically self-consistent, amazingly success-

fully at describing and predicting the world, and yet were seemingly at odds. There were

slippery problems that needed to be addressed. Heisenberg’s formulation was a theory of

observables, a theory for the experimentalists; Schrödinger’s was a theory of quantum states,

a theory for the theorists. Schrödinger recognized that Heisenberg’s matrices were matrix

elements of a position operator Q̂ with respect to an orthonormal basis in L2(R3) given the

general Hamiltonian H =
~p2

2m
+V (Q), while the vectors in `2 on which the Heisenberg matri-

ces corresponded to quantum states. What he lacked was an articulation of abstract Hilbert

spaces, and so he was unable to prove the two formulations were equivalent (that would take

von Neumann). Furthermore, while some solutions to Schrödinger’s equation were normaliz-

able and were labeled by discrete indices (like the simple harmonic oscillator), other solutions

to Schrödinger’s equation were effectively non-normalizable and labeled by a continuous vari-

able (such as the free particle with states k).

Paul Dirac, a theoretical physicist who wrote the first textbook on quantum mechanics12

based off of his Cambridge lectures, made an attempt to prove the equivalence of Heisen-

berg’s matrix mechanics with Schrödinger’s wave mechanics. His proposed solution to enforce

11The question we need to ask ourselves is why do we not notice quantum effects (except in how they’re used in day to day life)?
Why is it that we don’t see objects popping in and out of existence, appearing and disappearing? The answer is: mass. Consider a cat
weighing about 2.5 kilograms, and consider our error measurement of this cat’s location to be ∆x = .02mm. We can now derive the
intrinsic speed of the cat due to quantum effects by

∆v =
~

2m∆x
≈

10−34J · s
4(2.5kg)(10−5m)

≈ 5× 10−30m/s

This is an incredibly imperceptible evolution, and it becomes moreso as we increase the mass of our observed object. In this way, we
were able to ’recover’ classical mechanics at the scale of everyday observation.

12Principles of Quantum Mechanics, 1930
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orthonormality and unify the two formulations was a function which he dubbed the Dirac-

Delta function, which was defined as having a value of 0 except at a single specified point a,

where it would have a value of ∞, while the area under the ’curve’ would be 1. That is

δ(x) =

 0 x 6= 0

∞ x = 0

∫
R
δ(x− a) dx = 1

moreover, for ε > 0 ∫ a+ε

a−ε
δ(x− a) dx = 1

and ∫
R
F (x)δ(x− a) dx = F (a).

Dirac placed several rules on this function, as it was only intended to simplify the mathemat-

ical expression he was trying to capture as a bit of notation. In practice, this formulation was

intended to behave as a collapsed Gaussian distribution

δ(x− y) = lim
ε→0

1
√

2πε
e
− (x−y)2

2ε2

To see how it can be ’derived’, start with the Fourier transforms

ψ(x) =
1
√

2π

∫
R
φ(k)eikx dk

φ(k) =
1
√

2π

∫
R
ψ(y)e−iky dy

and then notice that

ψ(x) =
1

2π

∫
R

∫
R
ψ(y)eik(x−y) dk dy

where δ(x− y) =
1

2π

∫
R e

ik(x−y) dk and hence

ψ(x) =

∫
R
ψ(y)δ(x− y) dy.

The physical interpretation of this δ function is to suggest that the physical location of the

particle is completely determined. This would entail that φ(k) = 1 for all k.

Example. When considering Schrödinger’s equation with a Dirac-delta potential

V (x) = −αδ(x)

we are to solve for

−
~

2m

d2ψ

dx2
− αδ(x)ψ = Eψ
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Before proceeding to solve this equation, there are three conditions that need to be stated:

1. ψ is continuous on Ω, and here Ω = R.

2. dψ
dx

is continuous almost everywhere on Ω.

3. ψ vanishes at the boundaries of Ω, which means here that lim
|x|→∞

ψ(x) = 0

Now there are two possible states to consider: bound states where E < 0 and scattering states

where E > 0. First consider bound states:

• (Bound States) In region x < 0, the potential V (x) = 0 by definition and so

d2ψ

dx2
= −

2mE

~2
= κ2ψ

where κ =

√
−2mE

~
> 0 since E < 0. Then the general solution is given by

ψ(x) = Ae−κx +Beκx

and since e−κx
x→−∞→ +∞, it follows that A = 0 in order for this to be a real valued

solution, hence

ψ(x) = Beκx

for x < 0. Similarly, for x > 0, the general form taken is

ψ(x) = Ce−κx +Deκx

and since eκx
x→∞→ +∞, it follows that D = 0 and so

ψ(x) = Ce−κx

for x > 0. Now considering the boundary conditions at x = 0 such that ψ is continuous

and
dψ

dx
is continuous a.e. (expect where the potential is infinite). Then, without loss of

generality, let B = C

ψ(x) =

 Beκx x ≤ 0

Be−κx x ≥ 0

Now we integrate the Schrödinger equation over an infinitesimal neighbourhood about

the origin, i.e

−
~2

2m

∫ ε

−ε

d2ψ

dx2
dx+

∫ ε

−ε
V (x)ψ(x) dx = E

∫ ε

−ε
ψ(x) dx

which integrates to

−
~2

2m

dψ
dx

∣∣∣∣∣∣
ε

−ε

= +α

∫ ε

−ε
δ(x)ψ(x) dx = αψ(0)
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We find as ε→ 0 that

lim
ε→0
−Bκe−κε −Bκeκε = −

2mα

~2
ψ(0)⇒ −2Bκ = −

2mα

~2
B ⇒ κ =

mα

~2

therefore

E = −
(~κ)2

2m
= −

mα2

2~2

and we can normalize ψ by setting B =
√
κ. In this case, there is exactly one bound state

given by

ψ(x) =

√
mα

~
e
−mα|x|

~2

with corresponding energy

E = −
mα2

2~2

• (Scattering States) When E > 0, we consider x < 0 to find

dψ2

dx2
= −

2mE

~2
ψ = −k2ψ

with k =

√
2mE

~
, which is real and positive. The general solution then can be given by

ψ(x) = Aeikx +Be−ikx

and similarly for x > 0, we have

ψ(x) = Ceikx +De−ikx

and our boundary conditions require that

A+B = C +D

and

ik(A−B) = ik(C −D)

When integrating Schrödinger’s equation over an infinitesimal neighbourhood about the

origin we find that the second boundary condition requires

ik(C −D −A+B) = −
2mα

~2
(A+B)⇒ C −D = A

1 + 2i
mα

~2k

−B
1− 2i

mα

~2k


We immediately see that we have two equations with five unknowns, which cannot be

solved, and moreover, that this state ψ is not normalizable. The theory would have it that

this state does not exist. However, as physicists like to study the scattering phenomenon,

they have resolved this difficulty by constructing normalizable linear combinations of the

stationary states, and then look at the relative probabilities that a particle will push

through the potential barrier. These problems form the theoretical bedrock of quantum
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tunneling.

In subsequent editions of his textbook, Dirac unveiled the ”bra-ket” notation, which is still

standard in the literature (and much preferred to von Neumann’s own notation), when dealing

with the arbitrary vectors that appear in the competing quantum formalisms.

Definition. A ket can be thought of as a vector, denoted |x〉, existing in an arbitrary inner

product space χ.

Definition. A bra can be thought of as the dual of |x〉, denoted 〈x|, effectively it is a linear

transformation acting on |x〉 such that

1.

〈y|x〉 ∈ C

2.

〈y|(|x1〉+ |x2〉) = 〈y|x1〉+ 〈y|x2〉

3.

(〈y1|+ 〈y2|)|x〉 = 〈y1|x〉+ 〈y2|x〉

4.

〈y|(c|x〉) = (c〈y|)|x〉 = c〈y|x〉

5.

〈y|cx〉 = 〈c̄y|x〉 = c〈y|x〉

6.

〈y|x〉 = 〈x|y〉

7. and

〈x|x〉 > 0 (|x〉 6= 0)

Ket vectors may be multiplied by complex numbers and added to one another to form another

c1|A〉+ c2|B〉 = |C〉

Ket vectors are also be integrable, as they can be taken as the sum of a parameter |x〉 over a

certain range to get another ket vector, i.e.

∫
|x〉 dx = |Q〉

Dirac established a one-to-one correspondence between bras and kets, such that the bra cor-

responding to |x〉 is 〈x|. The bra-ket notation addressed the inadequacy of using ordinary

vectors, which were not sufficiently general for most dynamical systems in quantum mechan-

ics, such that any state of the dynamical system at a particular time would be specified by

both the bra and ket vectors.

Preserving the Heisenberg formulation, an observable A would have a corresponding eigen-
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value λ and an ’eigenket’ |ψ〉 satisfying

A|ψ〉 = λ|ψ〉. (2.26)

For a basis {ei}ni=1, the corresponding ket’s are |e1〉, . . . , |en〉. In general, for |v〉 ∈ χ,

|v〉 =

n∑
i=1

αi|ei〉 (2.27)

Now, when put over an orthonormal basis

〈ej |ei〉 = 〈ej , ei〉 = δij

Dirac proposed this notation to reconcile the matrix formalism with the wave-mechanical for-

malism, by noting that with proper normalizing constants, the wave-function ψ corresponded

to a state function |ψ〉 such that Born’s observation that Schrödinger’s wave equation de-

scribed a probability-wave holds, i.e.

〈ψ|ψ〉 =

∫
R
ψ∗ψ =

∫
R
|ψ|2 = 1 (2.28)

while for any observable A, with operator Â

〈ψ|A|ψ〉 =

∫
R
ψ∗Âψ

corresponds to the expected value of that observable. It should not strike the reader as

coincidental that we’ve used 〈, 〉 to represent the inner-product. This in fact was deliberate,

and so we should note that the bra-ket notation possess all the inner-product space properties:

in particular, linearity.

Now, let’s demonstrate how change of bases are represented in this notation. Consider we

have an orthonormal basis given by {fk}, where

|ei〉 =
∑
k

Aik|fk〉

for Aik ∈ C. If both bases {ei} and {fk} are orthonormal, then

〈fj |ei〉 = 〈fj |
∑
k

Aik|fk〉 =
∑
k

Aik〈fj |fk〉 = Aij

This yields the change of basis formula:

|ei〉 =
∑
k

〈fk|ei〉|fk〉

=
∑
k

Aik|fk〉

=
∑
k

|fk〉Aik

=
∑
k

|fk〉〈fk|ei〉
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which implies that I =
∑
k

|fk〉〈fk|.[1] Thus, for an arbitrary |v〉 ∈ χ

|v〉 =
∑
i

vi|ei〉

=
∑
i

vi

(∑
k

|fk〉〈fk|

)
|ei〉

=
∑
i

vi
∑
k

|fk〉Aik

=
∑
i

∑
k

viAik|fk〉

=
∑
i

∑
k

vi(〈fk|ei〉)|fk〉

=
∑
k

∑
i

vi(〈fk|ei〉)|fk〉

=
∑
k

v′k|fk〉

where v′k =
∑
i

〈fk|ei〉vi =
∑
i

Aikvi.

2.6 Von Neumann’s Synthesis

It was while he was working as David Hilbert’s assistant that von Neumann found himself

involved in the revolutions going on in physics. Although he applauded the formal framework

Dirac proposed for its elegance and power in applications, von Neumann loathed the Dirac

delta function’s central importance in that framework. Considering it to be an improper func-

tion, with self-contradictory principles13, von Neumann went about reformulating quantum

mechanics within a radically different framework based on Hilbert’s theory of operators.

It was von Neumann who recognized the mathematical structure which had eluded the physi-

cists. Although some Hilbert spaces were known, von Neumann recognized that Schrödinger’s

wave functions corresponded to unit vectors in a Hilbert space H, that Heisenberg’s observ-

ables were linear operators in `2, and that the Riesz-Fishcher theorem implied the two were

equivalent. His formulation saw that states of the physical system |ψ〉 are described by Hilbert

space vectors and the measurable quantities, the observables correspond to Hermitian opera-

tors acting upon the state vectors. In short order, von Neumann’s brilliant synthesis of the

matrix formulation of Heisenberg and the wave mechanical formulation of Schrödinger dis-

pensed with Dirac’s delta functions by way of a recognition of the isomorphism between the

sequence space of `2 and the function space of L2. This isomorphism led him to formulate the

notion of an abstract Hilbert space and develop his mathematical theory for quantum me-

chanics, yielding a mathematically rigourous theory which was as powerful as the heuristics

developed by the physicists whose work he synthesized.[6]

von Neumann recognized that the mathematical framework of matrix mechanics required self-

13von Neumann was correct about this: the Dirac delta function is actually a generalized function, or distribution. A distribution is a
linear functional F on an open set U such that lim

n→∞
F (ϕn) = F ( lim

n→∞
ϕn) for any convergent sequence {ϕn} ⊂ U .
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adjoint (and possibly unbounded) linear operators Â acting on a possibly infinite dimensional,

separable Hilbert space (depending on the nature of the observable). This formulation had

the observable identifying pure states of the system associated with the unit vectors satisfying

Schrödinger’s equation. This formulation naturally buttressed the probability14 interpreta-

tion of the wave function proposed by Born, himself a student of Hilbert. Since von Neumann

started with the space of square-integrable functions on the real line, specifying that inte-

gration must be defined by the Lebesgue integral, and that the inner-product operation was

defined on the equivalence classes of square integrable functions differing on sets of measure

zero, a formal axiomatic framework for elementary quantum mechanics linking the two com-

peting formalisms had been found.

In effect, since the quantum state is a square integrable function ψ ∈ L2(R), this state can be

normalized by dividing by the constant C =
∫
R |ψ|

2. For a normalized state ψ, the expecta-

tion value of an observable A could be derived from 〈ψ,Aψ〉, and more notably, the transition

probability from states ψ,ϕ could be described by |〈ϕ,ψ〉|2. In this way, von Neumann recog-

nized that the geometry afforded by Hilbert space had a direct physical meaning in quantum

mechanics. To see this, notice that |〈ϕ,ψ〉|2 = cos2(θ), since θ is the angle between unit

vectors ψ,ϕ. This geometry is what allows us to mathematically formalize the uncertainty

principle![6]

2.7 The Axioms of Quantum Mechanics

Given in Dirac’s bra-ket notation, the axioms of canonical quantization which reconciled

Heisenberg’s formulations with Schrödinger’s can be stated in various ways. The following

axioms describe canonical quantization for a single non-relativistic particle[1][4][5][8]:

1. For a quantum system, there exists a Hilbert space H such that the state of the system

is described by a state ’vector’ |Ψ〉 ∈ H such that

〈Ψ|Ψ〉 = 1 (2.29)

That is, we recognize that for each state |Ψ〉 ∈ H, there is a corresponding dual 〈Ψ| ∈ H∗

such that

〈Ψ|Ψ〉 :=

∫
Ψ∗Ψ = 1 (2.30)

In practical terms, solutions Ψ to Schrödinger’s equation are normalized square integrable

functions which satisfy ∫
Ω

Ψ∗Ψ =

∫
Ω

|Ψ|2 = 1 (2.31)

2. The physical quantities A of classical mechanics are replaced by physical observables

corresponding to Hermitian linear operators Â acting on H. The result obtained when A

is measured is an eigenvalue of Â which is guaranteed to be real by the hermiticity of Â.

This is where the spectral theorem, Theorem 13, comes into play. These eigenvectors are

14The reader should be aware that in the historical context, Kolmogorov had only recently axiomatized probability.

42



orthogonal by the self-adjointness of the operator, i.e.

〈x|y〉 = δ(x− y) (2.32)

in the position basis and

〈p|q〉 = δ(p− q) (2.33)

in the momentum basis. Note that there is no given means for finding the operator

corresponding to an observable.15

Finally, this suggests that the probability of measuring λj , an eigenvalue of observable Â,

is given by

|〈ψj |Ψ〉|2 (2.34)

where |ψj〉 is the associated eigenvector.

3. Given a system whose state vector |Ψ〉 ∈ H, there exists a Hermitian linear operator for

which |Ψ〉 is an eigenstate. Furthermore, supposing one prepares many systems in this

state, the observation of A in these systems at time t is generally a random variable with

an expectation value given by

〈Â〉t = 〈Ψ|Â(t)|Ψ〉 (2.35)

4. The operators for position, x̂, and momentum, p̂, satisfy the following commutation

relation16

[x̂, p̂] = i~ (2.36)

and

[p̂, x̂] = −i~ (2.37)

and furthermore, the Poisson bracket of classical mechanics is replaced with the commu-

tator

− i
~

[Â, B̂]

5. The time evolution of a vector space |ψj〉 is given by

i~ d
dt
|ψj〉 = Ĥ|ψj〉 (2.38)

We recognize this as being Schrödinger’s equation

i~
∂

∂t
Ψ = ĤΨ (2.39)

The link to what came before and what comes next is that H can be identified with L2(Ω)

for some suitable domain Ω, such that ψ ∈ L2(Ω) is a wave function. Then for instance

|ψ(x)|2 gives us the probability that a particle is at position x, moreover, by being associated

15This is quite important in theoretical quantum mechanics. Everett’s Many World’s interpretation of quantum mechanics implies
that the observed probability of a particle is an observable. However, it is not well-established that there is a way to gauge the ’true’
probability distribution of any given function. For a clearer insight into what this debate really entails, the reader is encouraged to study
the difference between Bayesian and frequentist approaches to probability and statistics.

16A detailed discussion of the derivation of these relations is discussed at length in the companion paper
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with a vector space and having observables be strictly limited to Hermitian operators, we can

associated to each operator an orthonormal basis of eigenvectors {n} so that the associated

state |ψ〉 of an observable can be expressed

|ψ〉 =
∑

λn|ψn〉

As mentioned earlier, we notice that this is intimately tied to the Fourier transform.

Finally, as one concrete example, we see this linear algebra at work for

x̂|x〉 = x|x〉

where x is an eigenvalue, and |x〉 is the associated eigenvector.

3 Determining The Probability Interpretation

”I think I can safely say that nobody understands quantum mechanics.”- Richard

Feynman, Ch. 6, ”Probability and Uncertainty”

3.1 The State of our Expectations

The establishment of the equivalence of the Heisenberg and Schrödinger mechanics

by an isomorphism between Hilbert spaces has resulted in a spectacularly successful

physical theory. Although fundamentally probabilistic in practice, it has been re-

markably accurate in terms of its predictive power. Among the most crucial physical

implications of these axioms is that the eigenfunctions of the hermitian operators are

the determinate states of observables. That is to say, where a determinate state is a

state in which an observable quantity has a definite, single, measurable value, there

is a corresponding eigenfunction.

In this sense the spectrum of our operators describe what we can observe; that our

operators must be Hermitian is simply a consequence of what it means to observe by

measurement. Our values need to be real, as we cannot take complex measurements

simultaneously. Now to get a sense of how the probabilities work, let’s first consider

an operator Â with a discrete set of eigenvalues {λn} corresponding with normalized

eigenvectors {|ψn〉} (again, this is possible since Â is Hermitian, and thus, can always

be given an orthonormal basis). Then

Â|ψn〉 = λn|ψn〉; 〈ψn|ψn〉 = 1

Thus the probability of |ψ〉 being in state |ψn〉 at any given time is

|cn|2 = |〈ψn|ψ〉|2.

Definition. The coefficient ψ(λ) ∈ C is called a wave function and a wave function
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is precisely the probability amplitude of finding an observable at λ in the state |ψ〉.

Formally speaking

ψ(λ) := 〈λ|ψ〉

In a discrete sum, it can be seen that 〈ψn|ψ〉 is the weight of |ψn〉 in the quantum

state |ψ〉.

However, some observables do not have discrete spectra. In this case, the set of

eigenstates are not technically in a Hilbert space, something which both David Hilbert

and Dirac endeavoured to resolve, albeit in different forms. Amongst physicists, the

solution has been to adopt a rigged Hilbert space, which we will define in section 4.

The rigged Hilbert space is a construction which links the eigenstates to a continuous

spectrum. As a consequence of the spectral theory mentioned at the beginning of

this paper, if Â has a continuous spectrum {λ}, then the state |ψ〉 is described by

|ψ〉 =

∫
ψ(λ)|λ〉 dλ

from which completeness follows as

I :=

∫
|λ〉〈λ| dλ (3.1)

This definition of the identity operator gives us

∫
|λ′〉〈λ′|λ〉 dλ′ = |λ〉

which recovers the Dirac delta function under normalization as

〈λ′|λ〉 = δ(λ′ − λ)

The coefficient expansion of ψ can be obtained by this normalization condition as

ψ(λ) = 〈λ|ψ〉

and thus, since |ψ〉 is assumed to be a unit vector

∫∫
ψ∗(λ)ψ(λ′)〈λ|λ′〉 dλ dλ′ =

∫
|ψ(λ)|2 dλ = 1

It follows from this relation that

〈ψ|Â|ψ〉 =

∫
λ|ψ(λ)|2 dλ

from which we can get the probability interpretation of the measurement of A. That

is, the probability of finding A ∈ [λ, λ+ dλ] is given by |ψ(λ)|2 dλ and from this, we

can derive the probability density

ρ(λ) = |〈λ|ψ〉|2
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Concretely, consider the position ’basis’, |x〉, and so the probability density for posi-

tion is described by

ρ(x) = |〈x|ψ〉|2

Hence, we can provide our familiar probability definitions:

Definition. The expectation of an observable in state ψ is given as

〈A〉 = 〈ψ|Â|ψ〉 =

∫
λ|ψ(λ)|2 dλ

Definition. The variance of an observable in state ψ is given as

σ2
A =

〈
(Â− 〈A〉)ψ|(Â− 〈A〉)ψ〉

〉
= 〈A2〉 − 〈A〉2

In general, the inner product of two states is given by the wavefunctions as follows:

〈ψ|ϕ〉 =

∫
〈ψ|λ〉〈λ|ϕ〉 dλ⇒

∫
ψ∗(x)ϕ(x) dx =

∫
ψ∗(p)ϕ(p) dp

In this way, we’ve identified the abstract ket vectors with the definite wavefunctions

from before.

Let’s consider the following examples to illustrate the power of this formulation:

Example. Momentum In the one dimensional case, let our momentum operator

p̂ := −i~ d
dx

. Let’s first verify this is in fact a Hermitian operator

〈ψ|p̂ψ〉 =

∫
ψ∗(−i~ d

dx
)ψ dx

= −i~
(
ψ∗ψ −

∫
(
d

dx
ψ∗)ψ dx

)
(Integration by parts)

=

∫
(−i~ d

dx
ψ)∗ψ dx(ψ∗ψ vanishes as ψ ∈ L2(Ω))

= 〈p̂ψ|ψ〉

Now given that p̂ is a Hermitian operator, we note that ~, as a real valued had no

bearing on the Hermiticity of the operator, and so for simplification, we ’drop’ it from

further analysis. Finally we see that

p̂|ψ〉 = p|ψ〉 ⇒ −i dψ
dx

= pψ ⇒ ψ(x) = e−ipx

We can have a basis given by |p〉, so that we will have a momentum space represen-

tation of our operators. It should be clear from the quantum mechanics axioms that

the operator p̂ will take out the corresponding p in the |p〉 basis, i.e.

p̂|p〉 = p|p〉
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and similarly

x̂|x〉 = x|x〉

It will be useful to show that

•

x̂|p〉 = −i d
dp
|p〉 (3.2)

•

〈px̂|ψ〉 = i
d

dp
〈p|ψ〉 = i

d

dp
ψ(p) (3.3)

•

〈p|p̂|ψ〉 = p〈p|ψ〉 = pψ(p) (3.4)

These equations follow as:

• (3.1)

Proof. First, let’s define the following unitary operator

Û(q) = eiqx̂

and then note that from axiom 4 [p̂, x̂] = −i~, here simplified to

[p̂, x̂] = −i

which implies

[p̂, x̂n] = −inx̂n−1

From this we find

[p̂, Û(q)] =

p̂, ∞∑
n=0

(iq)n

n!
x̂n

 =

∞∑
n=0

(iq)n

n!
[p̂, x̂n] =

∞∑
n=0

(iq)n

n!
− inx̂n−1 = qÛ(q)

Hence

p̂Û(q)− Û(q)p̂ = qÛ(q)⇒ p̂Û(q) = Û(q) (p̂+ q)

And thus

p̂Û(q)|p〉 = Û(q)(p̂+ q)|p〉 = Û(q)(p+ q)|p〉 = (p+ q)Û(q)|p〉

and since U is unitary, and thus preserves the norm, it follows that

Û(q)|p〉 = |p+ q〉

Now for infinitesimal q, it follows that

Û(ε)|p〉 = |p+ ε〉 ≈ (1 + iεx̂)|p〉
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from which we find that

x̂|p〉 =
|p+ ε〉 − |p〉

iε

ε→0→ −i
d

dp
|p〉

Hence

x̂|p〉 = −i
d

dp
|p〉

and

〈p|x̂ = i
d

dp
〈p|

(as this is the dual to |p〉.) Similarly we can show

p̂|x〉 = i
d

dx
|x〉

• (3.2)

Proof. 〈p|x̂|ψ〉 = i d
dp
〈p|ψ〉 = i d

dp
ψ(p) follows from (3.2) as the dual of x̂|p〉, so

〈p|x̂|ψ〉 = (−i d
dp
|p〉)∗|ψ〉 = i

d

dp
〈p|ψ〉 = i

d

dp
ψ(p)

• (3.3)

Proof.

〈p|p̂|ψ〉 = 〈p|p|ψ〉 ( follows from ( p̂|p〉)∗ = 〈p|p̂ )

= p〈p|ψ〉

= pψ(p)

Theorem 14. The probability amplitudes 〈p|ψ〉 and 〈x|ψ〉 are related by a Fourier

transform.

Proof. First recall our wavefunction-probability amplitude equivalence such that

ψ(p) = 〈p|ψ〉

ψ(x) = 〈x|ψ〉

Take |ψ〉 = |x〉 in the relation

(x̂ψ)(p) = 〈p|x̂|ψ〉 = −
d

dp
ψ(p)
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and thus

x〈p|x〉 = 〈p|x̂|x〉 = i
d

dp
〈p|x〉

Now, take |ψ〉 = |p〉, and thus

(p̂ψ)(x) = 〈x|p̂|ψ〉 = −i d
dx
ψ(x)

from which we can find

p〈x|p〉 = 〈x|p̂|p〉 = −i d
dx
〈x|p〉

Next it follows that

〈x|p〉 = Ceipx

as
d

dx
〈x|p〉 =

d

dx
Ceipx = ipCeipx = ip〈x|p〉

will satisfy this equation. Moreover, since this is an inner product space, 〈x|p〉 is

conjugate to 〈p|x〉 and hence

〈p|x〉 = C∗e−ipx.

Now, by our normalization condition

δ(x−y) = 〈x|y〉〈x|
∫
|p〉〈p| dp|y〉 =

∫
〈x|p〉〈p|y〉 dp = |C|2

∫
eip(x−y) dp = |C|22πδ(x−y)

implies that |C|2 =
1

2π
⇒ |C| =

1
√

2π
and hence when C is real, C = 1√

2π
and hence

ψ(p) = 〈p|ψ〉 =

∫
〈p|x〉〈x|ψ〉 dx =

1
√

2π

∫
〈p|x〉ψ(x) dx =

1
√

2π

∫
ψ(x)e−ipx dx

which we recognize as the Fourier transform of ψ(x).

Crucially, we notice that we can change the basis representing a state as follows

|Ψ〉 =

∫
ψ(x, t)|x〉 dx =

∫
ψ(p, t)|p〉

because

∫
ψ(p, t)|p〉 dp =

∫
ψ(p, t)I|p〉 dp =

∫∫
ψ(p, t)|x〉〈x|p〉 dx dp

=
1
√

2π

∫∫
ψ(p, t)eipx|〉 dp dx

=

∫  1

2π

∫
ψ(p, t)eipx dp

 |x〉 dx
=

∫
ψ(x, t)|x〉 dx

That is, the change of ’basis’ is accomplished by a Fourier transform where ψ(x, t) =
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1
√

2π

∫
ψ(p, t)eipx dp. This has somewhat profound physical implications, as alluded

to throughout this paper: space and time are related by a Fourier transform at

the quantum level, and as we shall soon see this fact and the geometry of Hilbert

space will give us the uncertainty principle. Now let’s look at the eigenvalues and

eigenfunctions associated with some familiar operators

Example. Consider the position operator x̂, and let ψy(x) be an eigenfunction and

y be the eigenvalue, i.e.

x̂|ψy(x)〉 = y|ψy(x)〉

or equivalently

xψy(x) = yψy(x)

Since y is a fixed value, while x is a continuous variable, we must consider a function

that has the property that

xψy(x) = yψy(x)

This would imply that ψy(x) = 0 when x 6= y, hence

ψy(x) = δ(x− y)

and so clearly, the position operator does not have a square-integrable eigenfunctions.

Nonetheless, these eigenfunctions are ’complete’ in the sense that

ψ(x) =

∫
R
c(y)ψy(x) dy =

∫
R
c(y)δ(x− y) dy

and we trivially have ’coefficients’

c(y) = ψ(y)

This is permissible as these eigenfunctions satisfy Dirac orthonormality (i.e.)

∫
R
ψ∗z (x)ψy(x) dx = |A|2

∫
R
δ(x− z)δ(x− y) dx = |A|2δ(y − z)

which entails that ψy(x) = δ(x− y) and 〈ψz|ψy〉 = δ(y − z).

Example. Consider p̂, and let ψp(x) be the eigenfunction corresponding to eigen-

value p. The general solution is

ψp(x) = Aeipx

which is not square-integrable, and thus momentum has no eigenfunctions in Hilbert

space. This worried von Neumann, but physicists are fine looking only at real eigen-

values, and thus in the one dimensional case, are fine considering

∫
R
ψ∗q (x)ψp dx = |A|2

∫
R
e
i(p−q)x

~ dx = |A|22π~δ(p− q)
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which entails that |A| =
1
√

2π
.

We now see the problem which disturbed von Neumann. When an observable has

a continuous spectrum, the eigenfunctions are not normalizable, nor are they in

readily in a Hilbert space, nor can they represent a physical state. However, if our

consideration is restricted to the eigenfunctions with real values, we find that these

eigenfunctions are Dirac ortho-normalizable and ’complete’ over the integral given

the Dirac delta function, i.e. for ψp(x) =
1
√

2π
eipx

〈ψq(x)|ψp(x)〉 = δ(p− q)

and

ψ(x) =

∫
R
c(p)ψp(x) dp =

1
√

2π

∫
R
c(p)eipx dp

where c(p) = 〈ψq|ψ〉. This would entail that we are working within a rigged Hilbert

space, which we will define in section 4.

This is meant to illustrate the important, albeit VERY subtle point regarding the

axioms of quantum mechanics mentioned at the beginning of section 3: chiefly the

difference between states and observables. States ψ must be square-integrable func-

tions, and thus exist in a Hilbert space. The physical meaning of an abstract state

under the Copenhagen interpretation of quantum mechanics has the state describing

a probability distribution for an outcome. An eigenstate, corresponding to an eigen-

vector, is called determinate if it is normalizable. The term determinate is used as

it would entail that performing the same observation will yield the same result. One

concrete example are the stationary states of the Hamiltonian. Physically speaking,

performing a measurement Ĥ on a particle in state ψn certainly yields the corre-

sponding allowed energy En (consider the simple harmonic oscillator). On the other

hand, observables, the actual ’stuff’ of the world, may not have a corresponding nor-

malizable eigenfunctions, and so there may not be a corresponding determinate state.

In fact, this precisely occurs when we are dealing with observables that have continu-

ous spectra, i.e., with unbounded self-adjoint operators. As we will discuss in section

4, two different approaches were taken to smooth over this difficulty: von Neumann’s

spectral theory for unbounded operators, and Schwartz’s theory of distributions to

rigourously define the Dirac delta function.

For now, we direct the reader to consider two familiar examples of this probability

formalism:

Example. First consider the case of the simple harmonic oscillator, and find the ex-

pected values for the position, momentum and energy operators. Recall our creation

and annihilation operators â†, â respectively and note that we can use their definition

â± =
1

√
2~mω

(mωx̂∓ ip̂)
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to express x̂ =

√√√√ ~
2mω

(â + â†) and p̂ = −i

√√√√m~ω
2

(â− â†). For simplicity, take ~ as

a natural unit, and so you can simplify the expressions to

x̂ =

√√√√ 1

2mω
(â+ â†)

and

p̂ = −i

√√√√mω

2
(â− â†)

Now, as a ’hint’, I will solve a simpler example where we consider the superposition

of states ψ0 and ψ1 corresponding to the first two energy levels E0 and E1. In this

case the initial superposition of ψ0 and ψ1 can be given as

Ψ(x, 0) =
1
√

2
(ψ0(x) + ψ1(x))

We make this into a time-dependent equation as follows:

Ψ(x, t) =
1
√

2
(ψ0(x)e−iE0t) + ψ1(x)e−iE1t

Now notice that

âΨ(x, t) =
1
√

2
ψ0(x)e−iE1t

since âψ0 = 0 by definition. Similarly

â†Ψ(x, t) =
1
√

2
((â†ψ0)e−iE0t + (â†ψ1)e−iE1t) =

1
√

2
(ψ1(x)e−iE0t +

√
2ψ2e

−iE1t)

• Position

〈Ψ|x̂|Ψ〉 =

∫
Ψ∗(x, t)x̂Ψ(x, t) dx

=

√√√√ 1

2mω

∫
Ψ∗(x, t)x̂Ψ(x, t) dx

=

√√√√ 1

2mω

∫
Ψ∗(x, t)(â+ â†)Ψ(x, t) dx

=

√√√√ 1

2mω

(∫
Ψ∗(x, t)âΨ(x, t) dx+

∫
â†Ψ(x, t) dx

)
=

=

√√√√ 1

4mω

(∫
Ψ∗
(
ψ1e
−iE0t + (ψ0 +

√
2ψ2)e−iE1t

))

=
1

2
√

2mω

∫
(ψ∗0e

iE0t + ψ∗1e
iE1t)

(
ψ1e
−iE0t + (ψ0 +

√
2ψ2)e−iE1t

)

and by orthonormality of states ψn (as they are eigenstates with discrete energy
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spectra)

=
1

2
√

2mω

(
ei(E0−E1)t + e−i(E0−E1)t

)
=

1

2
√

2mω
cos((E1 − E0)t)

and since E1 = E0 + ~ω, we have by setting ~ = 1

〈x〉 =
1

2mω
cos(ωt)

• Momentum Similarly, we leave it to the reader to derive this in full, but for the

simple case of Ψ given above

〈p〉 = 〈Ψ|p̂|Ψ〉 = −

√√√√mω

2
sin(ωt)

What is extraordinary about this result is that the expectation values of position

and momentum are not stable, but dynamic, that is, the evolve over time. More

over,

〈p〉 = m
d〈x〉
dt

which is the result we would expect17 in classical mechanics.

• Energy In our simplified Ψ state, it helps to recall that Ĥ = ~ω(â†â+ 1
2
)

〈E〉 = 〈Ψ|Ĥ|Ψ〉 = 〈Ψ|(â†â+
~ω
2

)|Ψ〉 = 〈Ψ|(â†â)|Ψ〉+〈Ψ|~ω
2
|Ψ〉 = 〈Ψ|(â†â)|Ψ〉+~ω

2

and so

â†(âΨ) = â†

 1
√

2
ψ0e
−iE1t

 =
1
√

2
ψ1(x)e−iE1t

and so by orthonormality of the eigenvectors ψn, we have

〈Ψ|â†â|Ψ〉 =
~ω
2

and thus

〈E〉 =
~ω + ~ω

2

or simplified to

〈E〉 = ~ω

which is precisely

〈E〉 =
E0 + E1

2

Example. We leave it to the reader to consider the case of the free particle, and find

the expected values for the position, momentum and energy operators. Recall that

we can think of Ψ(x, 0), as a solution to the time-independent Schrödinger equation.

17This is more than just a pun
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3.2 Clarifying the Uncertainty Principle

After laying out all of the mathematical and physical formalisms necessary for this re-

markable result, let us first consider two abstract Hermitian operators Â and B̂, both

of which correspond to physical observables acting on a quantum system represented

by Ψ. Now let

|f〉 = (Â− 〈A〉)|Ψ〉

and

|g〉 = (B̂ − 〈B〉)|Ψ〉

We notice that |f〉 and |g〉 ∈ H, as they are defined as a linear combination of an

eigenfunction and a scalar multiple of the underlying state |Ψ〉. Thus, by definition,

σ2
A = 〈(Â− 〈A〉)Ψ|(Â− 〈A〉)Ψ〉 = 〈f |f〉 = ‖f‖2

and

σ2
B = 〈(B̂ − 〈B〉)Ψ|(B̂ − 〈B〉)Ψ〉 = 〈g|g〉 = ‖g‖2

And from this we find that

σ2
Aσ

2
B = 〈f |f〉〈g|g〉 = ‖f‖2‖g‖2 (3.5)

As a consequence of being in a Hilbert space, we can apply Cauchy-Schwarz and see

that

|〈f, g〉|2 ≤ ‖f‖2‖g‖2 = σ2
Aσ

2
B (3.6)

It is clear that 〈f |g〉 ∈ C, and so we remark that

|〈f |g〉|2 = (Re(〈f |g〉))2 + (Im(〈f |g〉))2 ≥ (Im(〈f |g〉))2 =

 1

2i
(〈f |g〉 − 〈g|f〉)

2

since for any z ∈ C

|z|2 ≥ (Im(z))2 = (
1

2i
(z − z∗))2

and so we can now refine our lower bound further to

σ2
Aσ

2
B ≥

 1

2i
(〈f |g〉 − 〈g|f〉)

2

(3.7)
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Now let us consider what 〈f |g〉 corresponds to in terms of our observables. We find

that

〈f |g〉 = 〈(Â− 〈A〉)Ψ|(B̂ − 〈B〉)Ψ〉

= 〈Ψ|(Â− 〈A〉)(B̂ − 〈B〉)Ψ〉

= 〈Ψ|(ÂB̂ − Â〈B〉 − 〈A〉B̂ + 〈A〉〈B〉)Ψ〉

= 〈Ψ|ÂB̂|Ψ〉 − 〈B〉〈Ψ|Â|Ψ〉 − 〈A〉〈Ψ|B̂|Ψ〉+ 〈A〉〈B〉〈Ψ|Ψ〉

= 〈AB〉 − 〈A〉〈B〉

and similarly

〈g|f〉 = 〈BA〉 − 〈A〉〈B〉

and so

〈f |g〉+ 〈g|f〉 = 〈AB〉+ 〈BA〉 − 2〈A〉〈B〉

while

〈f |g〉 − 〈g|f〉 = 〈AB〉 − 〈BA〉 = 〈[Â, B̂]〉 (3.8)

and so, by substituting (3.8) into (3.7), our general uncertainty principle can be

written

σ2
Âσ

2
B̂ ≥

 1

2i
〈[Â, B̂]〉

2

(3.9)

and so we see that our uncertainty about a system has a lower bound related to the

degree that it fails to commute! In the special case where Â = x̂ and B̂ = p̂, we find

by Axiom IV,

σ2
x̂σ

2
p̂ ≥

 1

2i
〈[x̂, p̂]〉

2

=

 1

2i
〈Ψ|i~|Ψ〉

2

=

 1

2i
i~〈Ψ|Ψ〉

2

=

~
2

2

=
~2

4
. (3.10)

We can then take the square-root of (3.9) to find

σx̂σp̂ ≥
~
2

(3.11)

This can be thought of probabilistically as saying the uncertainty in position mul-

tiplied by the uncertainty in momentum is at least one half of a planck constant.

Physically speaking, there is a lower bound to how finely we can know the universe

in terms of position and momentum.

4 Nothing Is Perfect: A Tale of Two Compet-

ing Formalisms

”It seems clear that the present quantum mechanics is not in its final form.”-

Paul Dirac, ”The Early Years of Relativity” in Albert Einstein: Historical and
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Cultural Perspectives: The Centennial Symposium in Jerusalem (1979)

4.1 Just Because It Works, Doesn’t Mean It’s Right:

von Neumann’s Obsession with Rigour

As mentioned earlier in the paper, von Neumann had some serious doubts about

the formalism which he had proposed. At first, von Neumann worked to find a

mathematical structure of continuous geometries to supersede the Hilbert space

formulation. However the framework he pursued could not generalize the sepa-

rable Hilbert space framework. Instead, it strengthened the Hilbert space for-

mulation, while giving physicists and mathematicians useful tools to study in

their own right. Chief among them were his research into rings of operators.

Without extensively covering this research, we will provide a few definitions and

proceed to note that this led to the theory of C∗ algebras.

4.1.1 von Neumann Algebras

Definition. A ∗ − ring is an associative ring A with map ∗ : A → A which is

both an antiautomorphism and an involution, i.e. for all x, y ∈ A

1. 1∗ = 1

2. (x∗)∗ = x

3. (x+ y)∗ = x∗ + y∗

4. (xy)∗ = y∗x∗

Definition. A ∗−algebra A is a ∗−ring with involution ∗ that is an associative

algebra over a commutative ∗−ring R with involution † such that for all r ∈

R, x ∈ A

(rx)∗ = r†x∗

Definition. A von Neumann algebra or W ∗−algebra is a ∗−algebra of bounded

operators on a Hilbert space that is closed in the weak operator topology and

contains the identity operator.

Definition. A von Neumann algebra W whose centre consists only of the iden-

tity operator is called a factor. von Neumann showed that every such algebra W

on a separable Hilbert space is isomorphic to a direct integral of factors whose

decomposition is essentially unique. This led to the problem of classifying iso-

morphism classes of von Neumann algebra’s on separable Hilbert spaces, which

he and Murray were able to break into three types.

1. A factor is type I if there is a minimal projection operator E 6= 0 such that

there is no other projection F with 0 < F < E. A subtype of type I operators

are the type In operators , which correspond to finite dimensional Hilbert

spaces, while type I∞ corresponds to an infinite dimensional, separable Hilbert

space. The bounded operators on a separable, infinite dimensional Hilbert
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space are type I∞.

2. A factor is type II if there are no minimal projections, but there are non-

zero, finite projections. A type II1 factor F is the unique, smallest infinite

dimensional factor contained in other infinite dimensional factors such that

any infinite dimensional factor contained inside F is isomorphic to F. It is

worth noting that while von Neumann came to regard Type II1 factors as the

proper generalization of type In factors, rather than the type I∞ factor, this

approach has not been as preferred by physicists as the use of distributions

and generalized functions.

3. A factor is type III if it does not contain any nonzero, finite projections.

Although Murray and von Neumann were not able to distinguish subtypes

for type III factors, and in fact, questioned if they even existed, subtypes

have been found since 1936, when they were first introduced.

4.2 Formalizing the Pragmatic: The Theory of Dis-

tributions

While von Neumann worried about the formalism he proposed, in part because

he insisted that it was necessary for every experimental observer to have an a pri-

ori probability distribution, Paul Dirac got along quite well with this framework,

and by the 1940s found that his Delta function was in fact a real mathemati-

cal object, a generalized function whose emerging theoretical background, the

theory of distributions, strengthened the Dirac orthonormalizable formulation of

quantum mechanics by placing it inside a rigged Hilbert space.

Definition. A vector space V over k is locally convex if it is defined in terms

of semi-norms. Recall a semi-norm on V is a map ρ : V → R such that

1. (Non-negative) ρ(x) ≥ 0

2. (Homogeneous) ρ(cx) = |c|ρ(x)

3. (Subadditive) ρ(x+ y) ≤ ρ(x) + ρ(y)

Definition. Ω is a paracompact, smooth manifold if

• Every open cover of Ω has an open refinement which is locally finite.

• All transition maps on Ω are smooth.

Definition. For an open subset U ⊂ Ω, where Ω is a paracompact, smooth

manifold. let {Ui} be a countable, nested family of open subsets of U with

compact closures given as Ci = Ūi.

Let Si be the family of smooth functions on U with support lying in Ci.

Now let D(U) =
⋃
i∈N

Si. We call D(U), the domain of a distribution, and it

consists smooth maps. It can be given the following limit-topology, where a

family of functions {ϕn} ⊂ D(U) converges to ϕ provided:
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• If there is compact support for all {ϕn}, so that C ⊂ U contains the support

for all {ϕn}, i.e. ⋃
n∈N

supp(ϕn) ⊂ C

• For each multi-index α, the sequence of partial derivatives Dαϕn tends uni-

formly to Dαϕ

This allows us to consider D(U) to be a complete locally convex topological

vector space with the Heine-Borel property (i.e., it is closed and bounded, and

compact).

Notation. We denote the space of all distributions on U by D′(U).

Definition. A distribution or generalized function on U is a linear functional

F : D(U)→ k, where k = R or C such that

lim
n→∞

F (ϕn) = F ( lim
n→∞

ϕn)

for any convergent sequence of {ϕn} ⊂ D(U). So, a generalized function belongs

to a class of linear functionals, denoted d, which map the smooth test functions

into R or C. Instead of writing F (ϕ), we write 〈F,ϕ〉.

With the space of distributions on an open subset defined, we can now define a

rigged Hilbert space.

Definition. A rigged Hilbert space is a construction to link the distribution

and square-integrable aspects of functional analysis. First introduced to study

spectral theory, they are used to bring together a bound state (eigenvectors) and

a continuous spectrum. The formal defintion comes courtesy of Israel Gelfand,

and is given as a pair (H,X ), where X = H, and X is given a topological vector

space structure for which the inclusion map ι is continuous.

Then, when identifying H with H∗, the adjoint to ι is the map

ι∗ : H∗ → X ∗

The duality pairing of X ,X ∗ must be compatible with the inner product of H,

i.e.

〈u, v〉X×X∗ = 〈u, v〉H

whenever u ∈ X ⊂ H and v ∈ H = H∗ ⊂ X ∗. The term rigged was chosen

because of the inclusion relation

χ ⊂ H ⊂ χ∗

The study of rigged Hilbert spaces emerged out of abstract functional analysis,

where χ ⊂ H was a subspace of H with a finer topological structure.

Definition. The dual χ∗ is realized as a space of distributions and the linear
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functionals on χ such that for x ∈ H

ϕ 7→ 〈x, ϕ〉

are faithfully represented as distributions by the requirement that χ is dense in

H.

Finally, it’s worth mentioning that H is self-dual as a consequence of the Riesz

representation theorem. This formalization is what makes Dirac orthonormality

mathematically sound, and is the preferred basis to von Neumann’s approach.

5 Afterword: Comments on the sources, and

the Axioms of Canonical Quantization

The vast bulk of this paper was drawn from 4 primary sources. A vast major-

ity of the working examples, as well as the historical context was drawn from

my course notes and the assignments from Brian Greene’s year long course

on the Mathematics of Quantum Mechanics[1], as well as from Byron-Fuller’s

unabridged Mathematics of Classical and Quantum Physics[4]. Furthermore,

some examples were drawn from David Griffiths Introduction To Quantum Me-

chanics[5], which takes a very applications based approach to the material. In

some instances, his exposition was the cleanest regarding how to solve the wave

equation. Finally, some of the discussion regarding the Lagrangian and Hamil-

tonian formulation were best summarized by Nakahara’s book[8]. What’s more

intriguing is that all four sources gave completely different accounts of these

fundamental axioms, or rather, different wordings and orderings of the axioms.

Through the remaining sources were read in preparation for this paper, I wrote

out my own version of these axioms. Although the axioms as presented are

closest in ordering to the axioms as given in Brian Greene’s course, the language

and notation is closer to Nakahara’s[8]and Dirac’s[3]. For those interested in von

Neumann’s notation, Byron and Fuller may be the most comprehensive source.
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