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Review of Last Talk and Some Quick Universal Constructions

Categories (Jumping to the working definition)

A category C consists of
a class of objects denoted |C|
a class of arrows (morphisms) denoted by C
two maps s, t : C ! |C|, a map 1 : |C| ! C and a composition
relation ;✓ C ⇥ C ⇥ C

such that for all X ,Y ,Z 2 |C|
1 C(X ,Y ) := {f 2 C | s(f ) = X ^ t(f ) = Y }
2 (identity) 1(X ) ⌘ 1

X

2 C
3 when C(X ,Y ) and C(Y ,Z ) are inhabited, then

(�); (�) : C(X ,Y )⇥ C(Y ,Z ) ! C(X ,Z ) defined by
(f , g) 7! f ; g ,an associative operation such that the identity
arrows are left and right identities.
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Example: Pred

Not only are sets categories, but we can treat predicates on sets as
a category as follows:

1 objects are pairs (I ,X ) such that X ✓ I . We say that "X is a
predicate of Y" and write X (i) for i 2 X . This choice of
notation is intended to emphasize that i 2 I may be chosen as
a free variable

2 morphisms (I ,X ) ! (J,Y ) are functions u 2 Sets(I , J) such
that for all i 2 I , X (i) implies Y (u(i))
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Example : Rel

Just as we may turn predicates on sets into a category, we may also
turn relations on sets into a category. We present the category of
binary relations Rel as follows:

1 objects are pairs (I ,R) where I 2 |Sets| and RI ⇥ I

2 morphisms (I ,R) ! (J, S) are set functions u 2 Sets(I , J)
such that for all i , j 2 I , R(i , j) implies that S(u(i), u(j))
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Functors (Jumping to the working definition)

A functor F : C ! D consists of mappings |C| ! |D| and
F
X ,Y : C(X ,Y ) ! D(F(X ),F(Y )) for all objects X ,Y 2 |C| such

that
1 F(1

X

) = 1F(X )

2 F(f ; g) = F(f );F(g) for all composable arrows f , g 2 C.
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A Very Important Example

Given a functor F : D ! C we can define for any X 2 C the
comma category X/F whose arrows are f 2 C(X ,F(Y )), often
denoted as (f ,B), and arrows are g 2 D(Y ,Z ) such that
f ;F(g) =: f 0, where f 0 2 C(X ,F(Z )).
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Another Very Important Example: The Power Set

P : Sets ! Sets maps each set X to the set of its subsets
{Y | Y ⇢ X}, and each f : X ! Z is sent to P(f ) : P(X ) ! P(Z )
such that P(f )(Y ) = f (Y ) = {f (x) | x 2 Y }.
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Another Very Important example : Cartesian products

Let’s work in Sets for now
For any fixed X 2 |Sets| we may define a functor
X ⇥� : Sets ! Sets which maps each Y 2 |Sets| to X ⇥ Y
and each f 2 Sets(Y ,Z ) for any such Z to
(1

X

⇥ f ) : X ⇥ Y ! X ⇥ Z defined by
(1

X

⇥ f )(a, b) = (a, f (b))
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Another Very Important example : Internal Hom functors

In any locally small category C, and for any object X 2 |C, we can
define

C(X ,�) : C ! Sets

by sending every Y 2 |C| to the set of arrows C(X ,Y ) and every
f : Y ! Z is sent to C(X , f ) : C(X ,Y ) ! C(X ,Z ) by
pre-compostion, i.e. this is defined as C(X , f ) := g ; f
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Functor Properties

A functor F : C ! D is full when for every X ,Y 2 |C|, the
mapping on arrows X ,Y : C(X ,Y) ! D(F(X ),F(Y)) is
surjective
F is faithful if each F

X ,Y is injective
C ✓ D, ie. C is a subcategory of D, if |C| ✓ |D| and
C(X ,Y ) ⇢ D(X ,Y ) for all X ,Y 2 |C|, and composition in C
is a restriction of composition in D
A subcategory C ✓ D is broad when |C| = |D|.
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Categories: Fibred categories

Given a functor p : E ! B, we can define a new category

with respect to every object in the image of p. Let I 2 |B|, and
define E

I

:= p�1(I ) such that
1 objects are X 2 |E| such that p(X ) = I

2 morphisms are f 2 E(X ,Y ) such that p(f ) = 1
I

2 B

E
I

is the fibre category over I
We say that X 2 |E

I

| is above I and similarly f 2 E such that
p(f ) = u is said to be above u.
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Functors: Fibrations

Given a functor p : E ! B, we say f 2 E is Cartesian over and
u 2 B(I , J) if p(f ) = u and for every g 2 E(Z ,Y ) such that
p(g) = u � w for some w 2 B(p(Z ), I ) there is a uniquely
determined h 2 E(Z ,X ) above w with f � h = g

f 2 E(X ,Y ) is a Cartesian if it is Cartesian over its underlying
map p(f ).
p is a fibration if for every Y 2 |E| and u 2 B(I , p(Y )) there is
a cartesian morphism f 2 E(X ,Y ) over u
Practically understood, fibrations capture indexing and
substitution
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Fibrations Example

Let I 2 |Sets|.
The fibre category Pred

I

is the subcategory of predicates on I
identified with the poset category (P(P)(I ),✓) ordered by
inclusion
Given any u 2 Sets(I , J) we can define a substitution functor
u⇤ : P(P)(J) ! P(P)(I ) via

(Y ✓ J) 7! ({i | u(i) 2 Y } ✓ I )

If u = ⇡ : I ⇥ J ! I , then ⇡⇤ is called weakening as it is given
by X 7! {(i , j) | i 2 X ^ j 2 J} by adding a dummy variable
j 2 J to the predicate X

If u = � : I ! I ⇥ I , then �⇤ is called contraction as it is
given by P(P)(I ⇥ I ) 3 Y 7! {i 2 I | (i , i) 2 Y }, and thus
replaces two variables of I with a single variable.
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A Quick Overview of Natural Transformations

A natural transformation is a map ↵ between functors

F ,G : C ! D which consists of the following
1 for each X 2 C, there is a component

↵(X ) ⌘ ↵
X

2 D(F(X ),G(X ))

2 for every f 2 C(X ,Y ), ↵
X

;G(f ) = F(f ;↵
X

We denote a natural transformation by ↵ : F ) G

Alexander Berenbeim Playing With Homotopy Type Theory in Coq



Terminal Objects

In a category C, we say 0 is initial if for all objects X 2 |C|,
there exist a unique arrow in C(0,X ), e.g. C(0,X ) is a
singleton.
Dually, we say 1 is a final object (sometimes terminal) if for all
X 2 |C|, C(X , 1) is a singleton, e.g. there exists a unique
arrow from X to 1.
In Sets these are the empty set and any singleton set
respectively.
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Universal Arrows

Not surprisingly, we can generalize this to arbitrary functorial
objects.
Universal arrows are initial objects in a some comma category,
i.e. given F : C ! D, and for each X 2 |D|, the universal
arrow from X to F is the initial object is the comma category
X/F
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Example: Diagonal Functor

For an index category J, and any category C, the diagonal functor
� : C ! Cat(J,C) maps all objects X 2 |C| to a functor denoted
X� : J ! C such that:

(X�(j) = X for all j 2 |J|
X�(u) = 1

X

for all u 2 J

Any f 2 C(X ,Y ) is mapped to the natural transformation
f� : X� ) Y� such that (f�)

j

= f for all |J|
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Example: Co-limits

A co-cone to a functor D : J ! C is an object in D/�.
A co-limit of D consists of a family of arrows {µ

i

}|J| such
µ
i

= D(u);µ
j

for every u 2 J(i , j)

co-limits are unique up to isomorphism, i.e. for any other
family {⌧

i

}|J| such that ⌧
i

= D(u); ⌧
j

for all u 2 J(i , j), then
there exists a unique f such that µ

i

; f = ⌧
i

That is to say, the colimit of D is a universal arrow from D to
�.
If J is a directed partially ordered set, then J co-limits are
directed colimits , and if J is a total order, then the J co-limits
are called inductive colimits
The dual construction here is a limit
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Examples of colimits

Coproducts
Disjoint unions in Sets

Free groups in Grp

Direct sums in Ab

Co-equalizers
Pushouts
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Example : (Co)-equalizers

If J is a category with two objects and two parallel arrows
between them, then J limits are equalizers and J colimits are
co-equalizers
In Sets the equalizer of any pair of parallel arrows
f , g : X ! Y would be the subset inclusion {x |f (x) = g(x)}
In Sets the co-equalizer k is the quotient of Y by the
equivalence relation generated by {(f (x), g(x)) | x 2 X}
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Adjunctions: Galois Connections

For two pre-orders (P ,) and (Q,), let

L: (P,) ! (Q,)op

R: (Q,)op ! (P ,)be order preserving functions
We say (L,R) is a Galois connection or an an adjunction if for
all p 2 P , q 2 Q,

L(p) � q () p  R(q)

Right adjoints preserve limits and dually left adjoints preserve
all colimits
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Some logic (back to Pred and Rel)

Substitution can be defined functorially
We work in the fibre category Pred

I

for a specific set I
Pred

I

is the subcategory of Pred whose objects are the
predicates X ⇢ I and whose morphisms are mapped onto the
identity function on I , e.g. this is the poset category (P(I ), )

For any u 2 Sets(I , J), the substitution functor
u⇤ : P(J) ! P(I ) is given by the mapping

(Y ✓ J) 7! ({i | u(i) 2 Y } ✓ I
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Weakening and Contraction

Let ⇡ : I ⇥ J ! I , then ⇡⇤ : P(I ) ! P(I ⇥ J) by sending
X 7! {(i , j) | i 2 X ^ j 2 J}
Let � : I ! I ⇥ I be the cartesian diagonal. Then
�⇤ : P(I ⇥ I ) ! P(I ) is given by Y 7! {i 2 I | (i , i) 2 Y }; this
replaces two variables of type I with a single one, and hence is
called contraction
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Quantifiers

Let Y ✓ I ⇥ J. Then
1 9(Y ) := {i 2 I | 9j 2 J, (i , j) 2 Y }(✓ I )
2 8(Y ) := {i 2 I | 8j 2 J, (i , j) 2 Y }(✓ I )

The assignments Y 7! 9(Y ),Y 7! 8(Y ) are functorial on
P(I ⇥ J) ! P(I )
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Logical Adjoints To Keep In Mind

9() ` ⇡⇤ ` 8()
Eq ` �⇤

> ` {�}
Q ` Eq
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The Point of Types

Types in type theory are a "theory of sorts" if one studies this
from a classical point of view
We are going to identify these Types with CCCs
The total category captures the logic, which is fibred over
another category capturing the type theory.
Guiding Principle: An operation in logic or type theory should
correspond to an adjoint, and these provide canonical
introduction, elimination, and conversion rules
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Homotopy Type Theory

Reminder: CCCs

A Cartesian closed category C has :
1 finite products
2 exponential objects
3 these are adjoint, e.g. �⇥ X ` C(X ,�) with a co-unit "X

indicating evaluation (application) so that for each pair of
objects X ,Y and f : Z ⇥ X ! Y , there is a unique
f 0 : Z ! C(X ,Y ) such that f = (f 0 ⇥ 1

X

); "X
Y

Alexander Berenbeim Playing With Homotopy Type Theory in Coq



Type Formers: Product Types

We already have encountered these, i.e.
(×-Form) If � ` A : T and � ` B : T then � ` A⇥ BT

(×-Intro)

� ` a : A � ` b : B
� ` (a, b) : A⇥ B

(×-Elim) If we have t : A⇥ B , then we have ⇡L(t) : A and
⇡R(t) : B

(×-Comp) We have that ⇡L((a, b)) ⌘ a and
⇡R((a, b)) ⌘ b.

Inductive prod (A B : Type) : Type :=

| pair : A -> B -> prod A B.
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Type Formers: Dependent function types

We model family of types via � : ↵ ! T; such � are
dependent types (or families of types)
This construction is generalized as a ⇧-type.
The entities of a ⇧-type are functions whose codomain type
varies on the domain to which the dependent function is
applied
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Type Formers: Dependent function types

(⇧-form) If � ` A : T and �, x : A ` B : T then
� ` (⇧

x :AB) : T

(⇧-intro) If �, x : A ` b : B then
� ` (�(x : A).(b : B) : (⇧(x :A)B)

(⇧-Elim) If � ` f :
Q

(x :A) B and � ` (a : A), then
� ` f (a) : B[x := a]

(⇧-Comp) If �, x : A ` b : B and � ` a : A then

� ` (�(x : A).(b : B))(a) ⌘ b[x := a] : B[x := a]

(⇧-Uniq) If � ` f :
Q

(x :A) B then
� ` f ⌘ (�x .f (x)) :

Q
(x :A) B

The ordinary function type A ! B :=
Q

(x :A) B is attained
when x does not freely occur in B
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Type Formers: Dependent pair types

(⌃-Form) If � ` A : T and �, x : A ` B : T, then
� `

P
(x :A) B : T

(⌃-Intro)

�, x : A ` B : T � ` a : A � ` b : B[x := a]

� ` (a, b) :
P

(x :A) B

(⌃-Elim)

�, z :
P

x :A B ` C : T

�, x : A, y : B ` g : C [z := (x , y)] � ` p :
P

x :A B

� ` ind

P
x :A B

(z .C , x .y .g , p) : C [z := p]
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Type Formers: Dependent pair types (Cont’d)

(⌃-Comp)

�, z :
P

x :A B ` C : T

� ` a0 : A

�, x : A, y : B ` g : C [z := (x , y)]

� ` b0 : B[x := a0]

� ` ind

P
(x :A) B

(z .C , x .y .g , (a0, b0)) ⌘ g [x := a0, y := b0)] : C [z := (a0, b0)]

Similarly to the product type, in
P

(x :A) B , if x does not freely
occur in B , then A⇥ B :⌘

P
(x :A) B
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Type formers: Coproduct types

(+-form) If � ` A : T and � ` B : T, then � ` A+ B : T
(+-Intro1)

� ` A : T � ` a : A � ` B : T
� ` inl(a) : A+ B

and similarly we introduce inr

(+-elim)

�, z : (A+ B) ` C : T

� ` e : A+ B

�, x : A ` c : C [z := inl(x)]

�, y : B ` d : C [z := inr(x)

� ` ind

A+B

(z .C , x .c , y .d , e) : C [z := e]

There are two computation rules defined with respect to the
two introduction rules, e.g.
ind

A+B

(z .C , x .c , y .d , inl(a)) ⌘ c[x := a] : C [z := inl(a)]

ind

A+B

(z .C , x .c , y .d , inr(b)) ⌘ c[y := b] : C [z := inr(b)]
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Type Formers: The Empty and Unit Types

(0-Form) Given any �, � ` 0 : T
(0-Elim) If �, x : 0 ` C : T and � ` a : 0 then
� ` ind0(x.C, a) : C[x := a]
In the induction rule ind0, x is bound in C . Importantly, there
are no introduction or computation rules on the empty type
(1-Form) Given any �, � ` 1 : T
(1-Intro) Given any �, � ` ? : 1
(1-Elim)

�, x : 1 ` C : T �, y : 1 ` c : C [x := y ] � ` a : 1
� ` ind1(x .C , y .c , a) : C [x := a]

(1-Comp)

�, x : 1 ` C : T �, y : 1 ` c : C [x := y ]

� ` ind1(x .C , y .c , ?) ⌘ c[y := ?] : C [x := ?]
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Type formers: Natural Numbers

(N -Form) Given any �, � ` N : T

(N -Intro1) Given any �, � ` 0 : N
(N -Intro2) Given � ` n : N, then � ` S(n) : N
(N Elim)

�, x : N ` C : T

� ` n : N
� ` c0 : C [x := 0]

�, x : N, y : C ` c
s

: C [x := S(x)]

� ` indN(x .C , c0, x .y .cs , n) : C [x := n]

There are two computation rules, one defined on our fixed
point 0, and the other defined on our successor map
S : N ! N.
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Type Formers: Natural Numbers Computation Rule

(N-Comp1)

�, x : N ` C : T

� ` n : N
� ` c0 : C [x := 0]

�, x : N, y : C ` c
s

: C [x := S(x)]

� ` indN(x .C , c0, x .y .cs , 0) ⌘ c0 : C [x := 0]

(N-Comp2)

�, x : N ` C : T

� ` n : N
� ` c0 : C [x := 0]

�, x : N, y : C ` c
s

: C [x := S(x)]

� ` indN(x .C , c0, x .y .cs , S(n)) ⌘

c
s

[x := n, y := indN(x .C , c0, x ..cs , n)] : C [x := S(n)]
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Revisiting The Dependent Functions and the Product Type

What if x is free in B? Then f :
Q

(x :A) B(x) is the name of a
dependent function with family B : A ! T, such that there is
some � : B(x) that may involve x : A.
Applying a dependent function f to an argument a : A is
equivalent to an element f (a) : B(a).
We may consider the product A⇥ B to be the left adjoint of
the exponential B ! C .
Let us define the recursor
rec

A⇥B

:
Q

C :T(A ! B ! C ) ! (A⇥ B ! C ) with the
defining equation

rec

A⇥B

(C , g , (a, b)) :⌘ g(a)(b)

and
⇡L

A,B :⌘ rec

A⇥B

(A,�(a : A).�(b : B).b

⇡R

A,B :⌘ rec

A⇥B

(B ,�(a : A).�(b : B).b

Alexander Berenbeim Playing With Homotopy Type Theory in Coq



Revisiting The Dependent Functions and the Product Type

Let’s check that
P

x :A B ⌘ A⇥ B . The recursion principle says in
order to define a non-dependent function

f : (
X

(x :A)

B(x)) ! C

we provide
g :

Y

(x :A)

B(x) ! C

so that f ((a, b)) :⌘ g(a)(b). By the defining equation

⇡L

A,B((a, b)) :⌘ a

we derive ⇡L

A,B : (
P

(x :A) B(x)) ! A and given (a, b), b : B(a), the
second projection is a dependent function

⇡R

A,B :
Y

p:
P

(x :A) B(x)

B(⇡L

A,B(p))
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Revisiting The Dependent Functions and the Product Type

The induction principle (i.e. the dependent eliminator) then
says to build a dependent function out of a ⌃-type into a
family C : (

P
(x :A) B(x)) ! T, we need

g :
Y

(a:A)

Y

(b:B(a))

C ((a, b))

We will defining an inhabitant f :
Q

p:
P

(x :A) B(x)
C (p) using

C (p) :⌘ B(⇡L(p))

to define
⇡R

A,B :
Y

p:
P

(x :A) B(x)

B(⇡L

A,B(p))

via ⇡R

A,B((a, b)) :⌘ b, so that f ⌘ ⇡R , and B(⇡L((a, b))) ⌘ B(a)
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Key Ideas

Path Spaces
Fibrations
Equivalences
Higher Inductive Types
Flattening Lemma
The Fundamental Group of the circle
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Homotopy Hypothesis/Theorem

Every topological space X has a fundamental ! groupoid
whose k-morphisms are the k-dimensional paths in X .
Depending on how we define an !-groupoid, there is a
homotopy theory preserving adjunction between the
fundamental !-groupoid of a space X and the geometric
realization of a !-groupoid as a space.
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Higher Groupoid Structure

An element p : x =
A

y is a path from x to y

p, q : x =
A

y are parallel, and r : p =
x=

A

y

q can be thought of
as a 2-path or a homotopy, and r =

p

x=
A

y

q

s is a 3-path,and so
on. . .
The higher groupoid structure arises from the induction
principle for identity types
The induction principle for identity types says if we want to
construct an object (or prove a statement) depending on a
path p : x =

A

y , then it will suffice to construct an object
(argument) in the case where x ⌘ y and p ⌘ refl

x

: x = x

The induction principle also endows each type with the
structure of an ! functor.
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Realizing the higher groupoid structure

Recall this Induction Principle of Identity Types amounts to: If
for every x , y : A, and every p : x =

A

y , we have a type
D(x , y , p)

for every a : A we have an element d(a) : D(a, a, refl
a

)

then
there exists ind=

A

(D, d , x , y , p) : D(x , y , p) for every x , y : A
and p : x =

A

y such that
ind=

A

(D, d , a, a, refl
a

) ⌘ d(a)
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Coq-HoTT

So far we’ve flirted with Coq and the Homotopy Type Theory
fork of the language
Now we’ll look at the actual code in conjunction with the
slides (after all the whole point of this endeavor is to learn
about proving things using HoTT, and the use of HoTT
instantiated in Coq is one way to do that)
I recommend downloading the HoTT code from github
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Theorem:
Q
A:T

Q
x ,y :A

(x =A y) ! (y =A x)

For each x , y : A and p : x =
A

y , we want to construct
p�1 : y =

A

x

By induction, it will suffice to do this in the case of y ⌘ x and
p is refl

x

.
In this case, x =

A

x ⌘ x =
A

y ⌘ y =
A

x , and so
refl

�1
x

:⌘ refl

x

.
The general case follows by the induction principle and the
conversion refl

�1
x

⌘ refl

x

, specifically

�A.�x .�y .�p.ind=
A

((�x .�y .�p.(y =
A

x)), (�x .refl
x

), x , y , p)

:
Y

A:T

Y

x ,y :A

(x =
A

y) ! (y =
A

x)

In particular, we defined a dependent path, i.e. a path lying
over other paths
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Constructing path inverses as a dependent path

We may assume that A : T and that we have the type family
D :

Y

(x ,y :A)

Y

(p:x=
A

y)

T

defined by D(x , y , p) :⌘ (y =
A

x).
We may consider D to be a function assigning any x , y : A and
p : x =

A

y to a type, here y =
A

x .
We have that d :⌘ �x .refl

x

:
Q
x :A

D(x , x , refl
x) so that for

each p : (x =
A

y) the induction principle for identity types
gives us an element

ind=
A

(D, d , x , y , p) : (y =
A

)

We define the desired inverse function
(�)�1 :⌘ �p.ind=

A

(D, d , x , y , p) with refl

�1
x

⌘ refl

x

following from the conversion rule
ind=

A

(D, d , a, a, refl
a

) ⌘ d(a)
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Tale of Two Induction Principles:Q
A:T

Q
x ,y ,z :A

(x =A y) ! (y =A z) ! (x =A z)

We are going to build a witness that concatenates paths, e.g.
p ⇧ q : x =

A

z

We introduce A : T and then define family D :
Q

x ,y :A

Q
p:x=

y

T

such that
D(x , y , p) :⌘

Y

z:A

Y

q:y=
A

z

(x =
A

z)

To apply the induction principle of identity types to D, we
need to construct a witness of type

Q
x :A

D(x , x , refl
x

)

To do this we will define a simpler type family E and apply the
induction principle of identity types to that first.
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Q
A:T

Q
x ,y ,z :A

(x =A y) ! (y =A z) ! (x =A z)

Define E :
Q
x :A

D(x , x , refl
x

) by type family

E (x , z , q) :⌘ (x =
A

z).
e(x) :⌘ refl

x

: E (x , x , refl
x

) since
E (x , x , refl

x

) ⌘ (x =
A

x)
Applying IPIT to (E,e), we have
d(x , z , q) :

Q
x ,z:A

Q
q:x=

A

z

E (x , z , q), i.e.

d(x , z , q) :
Y

x ,z:A

Y

q:x=
A

z

(x =
A

z)

Applying IPIT to (D,d), we have
�x .�y .�z .ind=

A

(D, ind=
A

(E , e, x , z , q), x , y , p) : (x =
A

y) !
(y =

A

z) ! (x =
A

z)
In particular refl

x

⇧ refl
x

⌘ refl

x

by the double induction
on paths p, q; if we only inducted on q, we would have a proof
that p ⇧ refl

x

⌘ p.
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The BIG table

So far, we have this picture

Equality Homotopy ! Groupoid
reflexivity constant path identity morphism
symmetry inversion of paths inverse morphism
transitivity concatenation of paths composition of morphisms
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Other Groupoid properties

For all types A, and for all x , y , z , q : A and paths p : x = y ,
q : y = z and r : z = w , we have
(unit laws) ru

p

: p = p ⇧ refl
y

and lu

p

: refl
x

⇧ p
p�1 ⇧ p = refl

y

and p ⇧ p�1 = refl

x

(p�1)�1 = p

p ⇧ (q ⇧ r) = (p ⇧ q) ⇧ r
These defined paths also satisfy their own coherence laws
which are higher paths, and so on, all the way up to ! (this
notion is made precise via a globular operad)
Homotopy type theory has that all this structure can be proven
starting from the inductive properties of identity types
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Loop space ⌦(A, a)

Unlike set theory, the proposition a = a carries a lot of
information since the proposition is a path from a point to
itself, e.g. a loop
Given a type A and an element of A, we define the loop space
⌦(A, a) to be the type a =

A

a.
That’s right, the loop space is identified with the identity type.
Any two elements of ⌦(A, a) are paths with the same start and
endpoints, so they can be concatenated, thus we have a binary
operation ⌦(A, a)⇥ ⌦(A, a) ! ⌦(A, a).
We let ⌦2(A, a) denote the space of $2-$dimensional loops on
the identity loop, i.e. refl

a

=
a=

A

a

refl

a
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Eckmann-Hilton: Composition in ⌦2(A) is abelian

Composition of 1-loops induces horizontal composition
? : ⌦2(A)⇥ ⌦2(A) ! ⌦2(A), such that ↵ ? � : p ⇧ q = q ⇧ s
with a, b, c : A and

p : a = b, q : a = b, r : b = c , s : b = c ,↵ : p = q,� : r = s

Define
↵ ⇧

r

r : p ⇧ r = q ⇧ r
by path induction on r so that ↵ ⇧

r

refl

b

⌘ ru

�1
p

⇧ ↵ ⇧ ru
q

Similarly induct on q for q ⇧
l

� : q ⇧ r = q ⇧ s with lu

s
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Eckmann-Hilton (Cont’d)

The ⇧
l

, ⇧
r

operations are called whiskering, so that ↵ ⇧
r

r and
q ⇧

l

� are composable 2-paths from which we define
↵ ? � :⌘ (↵ ⇧

r

r) ⇧ (q ⇧
l

�)

Supposing a ⌘ b ⌘ c so that p, q, r , s 2 ⌦(A, a), and further
p ⌘ q ⌘ r ⌘ s ⌘ refl

a

, then ↵,� : refl
a

= refl

a

are
composable in both orders,i.e.

↵� ⌘ (↵⇧
r

refl

a

)⇧(refl
a

⇧
l

�) = ru

�1
refl

a

⇧↵⇧ru
refl

a

⇧lu�1
refl

a

⇧�⇧lu
refl

a

⌘ refl

�1
refl

a

⇧ ↵ ⇧ refl
refl

a

⇧ refl�1
refl

a

⇧ � ⇧ refl
refl

a

= ↵ ⇧ �
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Pointed Types and their Loop spaces

A pointed type (A,a)$ is a type A : T with a basepoint

a : A, and we write T• :⌘
P

(A:T) A for the type of pointed types in
T

⌦(A, a) :⌘ ((a =
A

a), refl
a

) so that an element of it will be a
loop at a.
For each n : N, the n-fold iterated loop space ⌦n(A, a) of
(A,a) is defined recursively

⌦0(A, a) :⌘ (A, a)

⌦n+1(A, a) :⌘ ⌦n(⌦(A, a))
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Functions are Functors (on paths)

This amounts to saying that functions respect equality in Type
theory
Let’s define ap

f

: (x =
A

y) ! (f (x) =
B

f (y)) as applying
functions to paths by induction
Suppose that p is refl

x

, and define
ap

f

(p) :⌘ refl

fx

: f (x) = f (x). By path induction we’re done
In fact
ap

f

(p ⇧ q) = ap

f

(p) ⇧ ap
f

(q)

ap

f

(p�1) = ap

f

(p)�1

ap

g

(ap
f

(p)) = ap

g�f (p)

apid
A

(p)=p
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Type Families are Fibrations

Given a type family P over A, and a path p : x =
A

y , there is
a function p⇤ : P(x) ! P(y) defined through transport

P

By path induction again, it suffices to assume that p ⌘ refl

x

,
and in turn (refl

x

)⇤ : P(x) ! P(x) by the identity function.
Topologically, this is path lifting in a fibration, if we think of
P : A ! T as a fibration with base space A and P(x) as the
fibre over x , so that

P
x :A P(x) is the total space of the

fibration, with the first projection as the natural projection
We can define lift(u, p) : (x , u) = (y , p⇤(u)) in

P
x :A

P(x)

We can regard f :
Q
x :A

P(x) as a section of the fibration P, as f

shows that P is fiberwise inhabited
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Homotopies

Under the propositions-as-types interpretation, two
(dependently) typed functions f , g are the same ifQ

x :A(f (x) = g(x)) is inhabited, e.g. there is a functorial
equivalence (continuous path)
Such a functorial equivalence is a type of natural isomorphism
or homotopy, i.e. (f ⇠ g) :⌘

Q
x :A

(f (x) = g(x)); this is not the

same thing as identifying f = g
Homotopies are automatically natural transformations, as for
any H : f ⇠ g and p : x =

A

y , H(x) ⇧ g(p) = f (p) ⇧ H(y) by
induction on p, and noting that ap

f

and ap

g

will commute on
reflexivity, e.g.

H(x) = H(x) ⇧ refl
g(x) = refl

f (x) ⇧ H(x) = H(x)

f : A ! B has a quasi-inverse (adjoint equivalence) if
(g : B ! A,↵ : f � g ⇠ id

B,�:g�f⇠id
A)

. qinv(f ) denotes the
type of these adjoints.
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Equivalences

Given f : A ! B , define

isequiv(f ) :⌘ (
X

g :B!A

(f � g ⇠ id
B)⇥(

P
h:B!A

(h�f⇠id
A)

An equivalence from A to B is some f : A ! B with an
inhabitant of isequiv(f ), e.g. a proof that f is an
equivalence.
Let (A ' B) :⌘

P
f :A!B

isequiv(f ).

In HoTT we use equivalence in general and isomorphism when
the types behave like sets.
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The Higher Groupoid Structure of Type Formers

If P : a ! T is built up fiberwise via type forming rules, then
transport

P(p,�) is characterized up to homotopy via the
operations on the data that went into P

If P(x)⌘ B(x)× C(x)$, then

transport

P(p, (b, c)) = (transportB(p, b), transportC (p, c))

A deficiency: the characterizations of identity type, transport,
etc, are not necessarily judgemental equalities in other type
theories
Not all identity types can be determined by induction over the
construction of types (e.g. most nontrivial higher inductive
types)
An axiom is an ’atomic’ element declared to inhabit some
specified type, whereas a theorem has to be declared and
constructed.
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Dependent product types and function extensionality

The equivalence axiom for ⇧-types is function extensionality,
i.e. for any A,B,f,g the function

happly : (f = g) !
Y

x :A

(f (x) =
B(x) g(x))

is an equivalence
This axiom can be turned into a theorem (using the univalence
axiom and defining the interval type later)
The quasi-inverse funext : (

Q
x :A

(f (x) = g(x))) ! (f = g) can

be regarded as an introduction rule, happly as an elimination
rule, and the homotopies witnessing that funext as a
quasi-inverse to happly become propositional computation
rules
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Universes

So far we’ve elided something crucial. There isn’t quite one
single

universe type T, where a universe is a type whose elements are
types.

To avoid paradoxes, we introduce a hierarchy on the universes
T0 : T1 : T2 : · · ·

but we don’t even need to have this be a strict hierarchy; any poset
will do so long as the universes are cumulative, e.g. A : T

i

then
A : T

i+1

Given A,B : T, it makes sense to form the identity type
A =T B .
What we mean by univalence is the identification of A =T B
with the type A ' B .

Alexander Berenbeim Playing With Homotopy Type Theory in Coq



The Univalence Axiom: (A =T B) ' (A ' B)

Consequently, equivalent types may be identified
And idtoeqv : (A =T B) ! (A ' B) defined by
idtoeqv(p) :⌘ p⇤ is an equivalence
(Intro) For A =T B , ua : (A ' B) ! (A =T B)

(Elim) idtoeqv ⌘ transport

X 7!X : (A =T B) ! (A ' B)

(Comp) transportX 7!X (ua(f ), x) = f (x)

(Uniqueness) for any p : A = B , p = ua(transportX 7!X (p))

with

refl

A

= ua(id
A),ua(f )⇧ua(g)=ua(g�f ),ua(f )�1=ua(f �1)
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Sets

Discrete groupoids behave like sets, e.g. groupoids which are
determined by a set of objects and only identity morphisms are
the higher morphisms
Formally, for any A : T, isSet(A) :⌘

Q
x ,y :A

Q
p,q:x=y

p = q.

Note, there is no global membership predicate 2 as in ZF
The definining property of a set (a 0-type) is that there are no
non-trivial paths; the defining property of a 1-type is that
there are no non-trivial paths between paths, e.g.

Y

x ,y :A

Y

p,q:x=y

Y

r ,s:p=q

(r = s)
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n-Types

Any type universe T is not a set under this set up- just exhibit
a type A and a path p : A = A which is not equal to refl

A

,
say A = 2 and f : A ! A which switches the elements, so
ua(f ) is a path which is not equal to refl

A

as otherwise
ua(f ) = id

A

.
If isSet(A) is inhabited, then A is a 1-type
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Propositions-as-Types Revisited

Statements like LEM or LDN are incompatible with the
univalence axiom, e.g. there are types such that ¬(¬A) ! A is
not inhabited
When types are viewed as propositions, they can contain more
information than mere truth or falsity
The logical constructions on propositions as type must respect
this additional information
A type P is a mere proposition if isProp(P) :⌘ 8

x ,y :P(x = y)
is inhabited. In this case, P has no higher information.
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Pointed Mere Propositions P ' 1

Define f : P ! 1 by f (x) :⌘ ⇤ and g : 1 ! P by g(⇤) :⌘ x0,
where x0 : P .
The unit type is a mere proposition
Since for any x : P , g(f (x)) = x since P is a mere proposition
( and obviously f (g(⇤)) = ⇤), we have that f and g are
quasi-inverses
A space that is homotopically equivalent to the unit type is
contractible
Moreover, every mere proposition is a set
A is decidable if A+¬A is inhabited; B : A ! T is decidable ifQ
a:A

(B(a) + ¬B(a); and A has decidable equality if
Q

a,b:A
((a = b) + ¬(a = b))

Since we’re working in an intuitionistic setting, we don’t have
LEM

Alexander Berenbeim Playing With Homotopy Type Theory in Coq



Propositional Truncation

Some type formers do not preserve mere propositions (1 is
mere but 2 = 1 + 1 is not)
We introduce the type former of propositional truncation (of
(-1)-truncation) to truncate a type down to a mere proposition
kAk has two constructors:
For any a : A, |a| : kAk
For any x , y : kAk, x = y

And the recursion principle states that if B is a mere
proposition and f : A ! B , then there is an induced
g : kAk ! B such that g(|a|) ⌘ f (a) for all a : A

Alexander Berenbeim Playing With Homotopy Type Theory in Coq



Higher Inductive Types

In the classical setting, we use CW complexes to inductively
define spaces by the collection of points, paths, and higher
paths
Higher inductive types are a general schema for defining new
types generated by constructors, so that in addition to the
points generated in ordinary inductive types, we may also
generate paths and so on of the HIT
Ordinary constructors are known as point constructors while
the other constructors are path constructors (or higher
constructors)
Path constructors must specify the starting and ending points
of the path
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Type Formers: Integers

The Integers can be found defined
HoTT/theories/Spaces/Int.v
Notice that this is inductive in the sense that we have the
natural numbers type encoded as the type Pos
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Coequalizers

Can be found in HoTT/theories/HIT/Coeq.v
Recall that coequalizers are the colimits of a diagram
consisting of two parallel morphisms on two objects X,Y where
the object universal construction takes q : Y ! Q can be
thought of the smallest equivalence relation such that the two
morphisms are identified when working in Sets

In the category of topological spaces, S1 is the coequalizer of
the two inclusion maps from the standard 0-simplex into the
1-simplex
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Flattening Lemma

Can be found HoTT/theories/HIT/Flattening.v
The flattening lemma says that for such P : W ! T, the total
space

P
x :W

P(x) is equivalent to a flattened HIT whose

constructors are deduced from W and the definition of P
For instance, let X : T and e : X ' X . We can define a type
family P : S1 ! U using this S1 recursion:

P(base) :⌘ X and P(loop) := ua(e)

so X appears as the fibre P(base) of P at the base point and the
self-equivalence can be extracted by transporting along loop

Categorically,
P
x :W

P(x) is the Grothendieck construction of P,

and expresses its UMP as a lax colimit
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Flattening Lemma

Let f , g : B ! A and suppose W is an inductive type formed
by c : A ! W and p :

Q
b:B

(c(f (b)) =
W

c(g(b))), e.g. W is

the (homotopy) coequalizer of f and g . Further, let
C : A ! T and D :

Q
b:B

C (f (b)) ' C (g(b))

Then we define P : W ! T inductively by P(c(a)) :⌘ C (a)
and P(p(b)) :⌘ ua(D(b)). Further, let $~{W} by the HIT
generated by c̃ :

Q
a:A

C (a) ! W̃ and

p̃ :
Q
b:B

Q
y :C(f (b))

(c̃(f (b), y) =
W̃

c̃(g(b),D(b)(y))).

(Flattening) W̃ '
P
w :W

P(x)

This is a taste of the powers of combining HIT with univalence:
when W is HIT and T is a type universe, we can use the
recursion principle of W to define a type family P : W ! T
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FINALLY, Z = ⇡(S1)

There are in fact several ways to prove this.
By definition ⇡1(S1) = k⌦(S1)k0, so if ⌦(S1) = Z, and Z is a
set, the desired result follows by congruence.
Recall that classically, the proof uses the the winding map
w : R ! S1, which is a fibration, e.g. the universal cover, of
S1

A map of fibrations over B which is a homotopy equivalence
induces a homotopy equivalence on all fibers
By contractibility of R and P

base

S1 are both contractible, they
are homotopy equivalent and their fibres Z and ⌦(S1) over the
basepoint are homotopy equivalent
In particular, the type family defined by x 7! (x0 = x)
corresponds to a path fibration P

x0B ! B is contractible.
We’ll prove this in Coq via the code,encode,decode method
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Defining S

1 and universal covering

One way to define S1 as a HIT is to specify a base point and
the path from that point
In the interest of applying the Flattening lemma, we define S1

as the coequalizer of two copies of the identity map on the
Unit type
We define the universal cover code : S1 ! T by circle
recursion so that code(base) :⌘ Z and
ap

code

(loop) :⌘ ua(succ)

The loop we choose is the successor/predecessor isomorphism
on Z
Elements here are combinatorial data that act as codes for
paths on the circle, so that the integer n codes for the path
looping around n times
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Transporting along code

We’re claiming that for all integers,
transport

code(loop, x) = x + 1 and
transport

code(loop�1, x) = x � 1
Equationally, we’re showing

transport

code(loop, x) = transport

id((code(loop, x))

= transport

id(ua(succ), x) = x + 1

and similarly for the inverse loop.
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Encode-Decode

The idea of this proof is to define equivalences of a map that
sends paths to codes
We define encode :

Q

x :S1
(base = x) ! code(x) by

encodep :⌘ transport

code(p, 0)
We define decode :

Q

x :S1
code(x) ! (base = x) by circle

induction
In particular, when proving that this is a well-defined
inhabitant, we check that loop�1 respects loop, i.e. there is a
path from loop

�1 to loop

�1 over loop, i.e. that there is a
path transport

x 7!code(x)!(base=x)(loop, loop�1) to loop

�1
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Decode Is Well Defined

We build the define the path by applying the characterization of
transport when the outer connective of the fibration is ! so that
transport reduces to pre and post composition with transport at the
domain and codomain types

transport

x 7!code(x)=(base=x)(loop, loop�1) =

transport

x 7!(base=x)(loop)�loop�1�transportcode(loop�1)

= (� ⇧ loop) � (loop�1) � transportcode(loop�1)

= (� ⇧ loop) � (loop�1) � (pred) = (n 7! loop

n�1 ⇧ loop)
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Wrapping Up

For all x : S1 and p : base = x , decode
x

(encode
x

(p)) = p

For all x : S1 and c : code(x), encode
x

(decode
x

(c)) = c

There is a family of equivalences
Q

x :S1
((base = x) ' code(x))

Instantiating at base gives ⌦(S1, base) ' Z
Consequently, ⇡1(S1) = Z and for n > 1, ⇡

n

(S1) = 0 since

k⌦n(S1)k0 = k⌦n�1(⌦S1)k0 = k⌦n�1(Z)k0 = {⇤}

as Z is a set and therefore is contractible.

Alexander Berenbeim Playing With Homotopy Type Theory in Coq


