Cohesive Homotopy Type Theory: A Gentle Introduction To The World From The Perspective Higher Topos Theory

Alexander Berenbeim

July 23, 2014

Overview: Why Bother With CHoTT?

- Motivating Mathematics Is Always A Tricky Proposition.
- Cohesive Types Are Like The Types We Are Familiar With, Just With More Structure
- Interpreting Type Theory Internal To Categories With Geometric Structures
- Goal: To understand how cohesion arises out of a quadruple of adjoint functors which give rise to a triple of adjoint modalities.

Preliminaries: Categories

Definition

A category A consists of :

- 1. A type A_0 of **objects**. If a is an object of A_0 , we may denote this by a : A;
- 2. for each a, b : A, a set $Hom_A(a, b)$ of morphisms $f : a \to b$;
- 3. for each a:A, a morphism $1_a: \operatorname{Hom}_A(a,a)$;
- 4. for each a,b,c:A, a function $\operatorname{Hom}_A(b,c) \to \operatorname{Hom}_A(a,b) \to \operatorname{Hom}_A(a,c)$ denoted by $g \circ f$;
- 5. for each a, b : A and $f : \text{Hom}_A(a, b)$, $f = 1_b \circ f$ and $f = f \circ 1_a$.
- 6. for each a, b, c, d : A and $f : \operatorname{Hom}_A(a, b), g : \operatorname{Hom}_A(b, c)$, and $h : \operatorname{Hom}_A(c, d), \ h \circ (g \circ f) = (h \circ g) \circ f$

Preliminaries: Functors

Definition

Let A, B be categories. A **functor** $F : A \rightarrow B$ consists of:

- 1. A function $F_0: A_0 \rightarrow B_0$, denoted by F;
- 2. for each a,b:A, a function $F_{a,b}:\operatorname{Hom}_A(a,b)\to\operatorname{Hom}_B(F(a),F(b))$, also generally denoted by F;
- 3. for each $a: A, F(1_a) = 1_{F(a)}$;
- 4. for each $a, b, c: A, f: \operatorname{Hom}_A(a, b), g: \operatorname{Hom}_A(b, c), F(g \circ f) = Fg \circ Ff$.

Preliminaries: Natural Transformations

- ▶ If $F, G : A \rightarrow B$ are functors, then a **natural transformation** $\alpha : F \rightarrow G$ consists of
 - 1. (components) for each $a:A, \alpha_a: \operatorname{Hom}_B(Fa,Ga)$
 - 2. (naturality) for each a, b : A and $f : \operatorname{Hom}_A(a, b)$, $Gf \circ \alpha_a = \alpha_b \circ Ff$
- ► Functors which preserve finite limits are **left exact** and dually, functors which preserve finite co-limits are **right exact**.

"Adjoint functors arise everywhere"

- ▶ We say two functors F, G are **adjoint** if for all $a: A, b: B, \operatorname{Hom}_A(a, Gb) \cong \operatorname{Hom}_B(Fa, b)$.
- ▶ We denote this by $F \dashv G$.
- Adjoints arise when there are natural transformations $\eta: 1_A \to GF$ and $\varepsilon: FG \to 1_B$ which satisfy the zig-zig identities: $(\varepsilon F)(F\eta) = 1_F$ and $(G\varepsilon)(\eta G) = 1_G$.
- Let F ⊢ G. Then F preserves all colimits of A and G preserves all limits of D. If F is a left exact functor, then right adjoint G preserves all finite limits and co-limits. Hence F is exact.

The World Of Adjoints

► Definition

A pointed object classifying monomorphisms is a **subobject classifier**

► Example

Univalence implies that the type $\operatorname{Prop} := \sum_{X:\mathcal{U}} \operatorname{isProp}(X)$ classifies monomorphisms.

► Definition

Let A,B be categories which have finite limits, are cartesian closed and have a **subobject classifier**, and let $f:A\to B$. We say f is a **geometric morphism** if there is a pair of functors (f^*,f_*) of the

form
$$A \underset{f_*}{\overset{f_*^*}{\hookrightarrow}} B$$
 such that f^* is left exact and $f^* \dashv f_*$.

1-Topos and ...

▶ Definition

In the previous slide, we introduced the notion of geometric morphisms. These are morphisms over a very special kind of category called a **topos**. Specifically, a topos is a category $\mathcal E$ which

- 1. has finite limits
- has an object Ω: E, called the subobject classifier, with a function P which assigns to each object a: E an object Pa: E, where Pa is called the power object of a;
- 3. the functors $\operatorname{Sub}_{\mathcal{E}}$ and $\operatorname{Hom}_{\mathcal{E}}(b \times -, \Omega)$ such that for each object $a : \mathcal{E}$, we have two natural isomorphisms $\operatorname{Sub}_{\mathcal{E}} a \cong \operatorname{Hom}_{\mathcal{E}}(a, \Omega)$ and $\operatorname{Hom}_{\mathcal{E}}(b \times a, \Omega) \cong \operatorname{Hom}_{\mathcal{E}}(a, Pb)$.

► Example

The canonical example of a topos is the category of sets, where the subobject classifier consists of the characteristic functions and $\Omega = \{0,1\}.$

... Beyond

Definition

A **local geometric morphism** is an adjoint triple $f^* \dashv f_* \dashv f^! : B \rightarrow A$ such that for all $a, b : B, f^*$ is such that

- 1. (full) $f^* : \operatorname{Hom}_B(a, b) \to \operatorname{Hom}_A(f^*a, f^*b)$
- 2. (faithful) $f^* : \operatorname{Hom}_B(a,b) \longrightarrow \operatorname{Hom}_A(f^*a,f^*b)$.

Definition

A **local topos** \mathcal{E} is a sheaf topos where the global section geometric morphism $\mathcal{E} \xrightarrow{\Gamma}$ Set has a further right adjoint coDisc: Set $\hookrightarrow \mathcal{E}$, i.e. $Lconst \dashv \Gamma \dashv coDisc$.

Some Examples of Adjoints

▶ Example

Consider the unit type $\mathbf 1$ and an arbitrary category A. Clearly, $G:A\to \mathbf 1$ is a unique functor. If $F\dashv G$, then for any a:A, we find $\operatorname{Hom}_A(F(\star),a)\cong\operatorname{Hom}_\mathbf 1(\star,G(a))$, since only one map exists from $\star\to G(a)$

► Example

Let A=Top, the category of topological spaces. Now consider functors $F, G: \mathtt{Set} \to \mathtt{Top}$, which takes a set to its discrete and indiscrete topologies respectively. We find that $F \dashv U \dashv G$, which is an example of an **adjoint triple**.

Monads In Categories

- ▶ A **monad** in a category *A* is a triple given by
 - ► an endofunctor T
 - **>** a natural transformation $\eta:1_A\to T$ called the **unit of T**
 - ▶ a natural transformation $\mu: T \circ T \to T$ called the multiplication.
 - ► These natural transformations satisfy:

$$\begin{array}{ccccc}
T \xrightarrow{\eta T} T^2 \xleftarrow{T\eta} T & T^3 \xrightarrow{\mu T} T^2 \\
\downarrow \mu & & T\mu \downarrow & \downarrow \mu \\
T & & T^2 \xrightarrow{\mu} T
\end{array}$$

▶ A comonad on a category A is a monad on its dual category A^{op}.

Modalities

- Roughly speaking, a modality is a function M: U → Prop that tells us for every type A whether A has a given property M.
- ▶ If M is a modality, then for every type A, there is anther type $\bigcirc(A)$ such that $M(\bigcirc(A))$ holds.

Example

isSet: $U \to \text{Prop}$ is a modality for which the \bigcirc is given by the set truncation $||A||_0$.

In HoTT, the most frequently encountered modalities are the n-truncations.

Modalities as Stable Factorization Systems

We can think of modalities as **stable factorization systems**. That is

Definition

Let A be a category. Let (E, M) form two classes of morphisms. If (E, M) form two classes in A such that

- for every f: Hom_A(a, b) factors into f = r ∘ I, with I: E and r: M such that these factorizations are unique up to isomorphism;
- 2. E, M contain all isomorphisms;
- 3. and are closed under composition;
- 4. they satisfy the lifting problem:

$$\begin{array}{ccc}
a & \xrightarrow{u} c \\
f \downarrow & \xrightarrow{\exists \gamma} \downarrow g \\
b & \xrightarrow{v} d
\end{array}$$

The Heart of the Matter: Adjoint Monads

► Definition

An **adjoint cylinder** is an adjoint triple $F \dashv G \dashv H$ such that the adjoint pair on of the two sides consists of identity functors and the other side consists of an idempotent monad or comonad.

► Every adjoint triple induces an adjoint pair of endofunctors that underlie a monad induced by adjunction.

What Is Cohesion Anyway? (Hint: Adjoint Triples)

- ▶ Some familiar cohesive structures: open balls in topological spaces or smooth structures.
- Any type admits both discrete cohesion where no distinct points cohere non-trivially, and a codiscrete cohesion, where all points cohere in every possible way admitted by the cohesive structure.
- ▶ Broadly speaking, cohesion is an adjoint triple of modalities

$$\texttt{modality} \dashv \texttt{comodality} \dashv \texttt{modality} \equiv \int \dashv \flat \dashv \sharp$$

Coming to Terms With Cohesion

Definition

 $\sharp :\equiv \mathtt{coDisc} \circ \Gamma$, where the codiscrete objects are the modal types.

▶ Definition

 $\flat :\equiv \mathtt{Disc} \circ \Gamma$, where the discrete objects are the modal types.

Definition

 $\int :\equiv \mathtt{Disc} \circ \Pi$, where the "shape" modality \int builds out of an additional left adjoint Π , which preserves finite products.

► So we identify the adjoint 4-tuple of functors with the adjoint triple of modalities:

$$\Pi \dashv \mathtt{Disc} \dashv \Gamma \dashv \mathtt{coDisc} \equiv \int \dashv \flat \dashv \sharp$$

Example: Mengen/Kardinalen (Quantity), Continuum (Infinitesimally Cohesive), and Cohesive Sets

- ► The motivating example: Lawvere's analysis of Cantor's account of *Mengen* and *Kardinalen*.
- The notion of quantity is an adjoint between discreteness and continuity given by b → #.
- ▶ The geometric notion of continuum geometry with the adjoint cylinder from $\int \neg b$ and the natural transformation $bX \to X \to \int X$.
- ▶ If this transformation is an equivalence, ie $\flat \xrightarrow{\simeq} \int$, then **H** is **infinitesimally cohesive**, in the sense that objects are built from precisely one point in each cohesive piece.
- A cohesive set is an adjoint triple of these modalities ∫ ⊢ ♭ ⊢ ♯.

Example: Reflexive Graphs (Thanks Tobias!)

- Let RGr be the category of reflexive graphs.
- ▶ Let $\Gamma : RGr \rightarrow Set$, defined by taking a graph to the set of its vertices.
- How to characterize the adjoint quadruple Π ⊢ Disc ⊢ Γ ⊢ coDisc?
 - coDisc should be a functor from Set to RGr which completely coheres.
 - Disc should be a functor from Set to RGr which completely repulses.
 - Π is a functor that should send each reflexive graph to a set of its path components.

Questions?