
Time-Dependent Programming In the Answer Set
Programming Paradigm

logostheorist

April 24, 2017

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Time-Dependent Programming In The Answer Set Programming

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Paradigm

The Answer Set Programming Paradigm

ASP is a form of non-monotonic reasoning based on
stable-state semantics;

ASP paradigm amounts to figuring out how to state a problem
as opposed to declaring how to solve a problem

1 Encode a problem I as a logic program P such that solutions
of I are models of P

2 Compute a model M of P using an Answer Set Solver such as
dlv or Prolog

3 Extract a solution for I from M

A positive logic program P consists of a finite set of clauses
called rules consisting of atoms a, bi in a first order language
of the form

a← b1, . . . , bm

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

The Answer Set Programming Paradigm

ASP is a form of non-monotonic reasoning based on
stable-state semantics;
ASP paradigm amounts to figuring out how to state a problem
as opposed to declaring how to solve a problem

1 Encode a problem I as a logic program P such that solutions
of I are models of P

2 Compute a model M of P using an Answer Set Solver such as
dlv or Prolog

3 Extract a solution for I from M

A positive logic program P consists of a finite set of clauses
called rules consisting of atoms a, bi in a first order language
of the form

a← b1, . . . , bm

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

The Answer Set Programming Paradigm

ASP is a form of non-monotonic reasoning based on
stable-state semantics;
ASP paradigm amounts to figuring out how to state a problem
as opposed to declaring how to solve a problem

1 Encode a problem I as a logic program P such that solutions
of I are models of P

2 Compute a model M of P using an Answer Set Solver such as
dlv or Prolog

3 Extract a solution for I from M

A positive logic program P consists of a finite set of clauses
called rules consisting of atoms a, bi in a first order language
of the form

a← b1, . . . , bm

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

The Answer Set Programming Paradigm

ASP is a form of non-monotonic reasoning based on
stable-state semantics;
ASP paradigm amounts to figuring out how to state a problem
as opposed to declaring how to solve a problem

1 Encode a problem I as a logic program P such that solutions
of I are models of P

2 Compute a model M of P using an Answer Set Solver such as
dlv or Prolog

3 Extract a solution for I from M

A positive logic program P consists of a finite set of clauses
called rules consisting of atoms a, bi in a first order language
of the form

a← b1, . . . , bm

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

The Answer Set Programming Paradigm

ASP is a form of non-monotonic reasoning based on
stable-state semantics;
ASP paradigm amounts to figuring out how to state a problem
as opposed to declaring how to solve a problem

1 Encode a problem I as a logic program P such that solutions
of I are models of P

2 Compute a model M of P using an Answer Set Solver such as
dlv or Prolog

3 Extract a solution for I from M

A positive logic program P consists of a finite set of clauses
called rules consisting of atoms a, bi in a first order language
of the form

a← b1, . . . , bm

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

The Answer Set Programming Paradigm

ASP is a form of non-monotonic reasoning based on
stable-state semantics;
ASP paradigm amounts to figuring out how to state a problem
as opposed to declaring how to solve a problem

1 Encode a problem I as a logic program P such that solutions
of I are models of P

2 Compute a model M of P using an Answer Set Solver such as
dlv or Prolog

3 Extract a solution for I from M

A positive logic program P consists of a finite set of clauses
called rules consisting of atoms a, bi in a first order language
of the form

a← b1, . . . , bm

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

The Answer Set Programming Paradigm

ASP is a form of non-monotonic reasoning based on
stable-state semantics;
ASP paradigm amounts to figuring out how to state a problem
as opposed to declaring how to solve a problem

1 Encode a problem I as a logic program P such that solutions
of I are models of P

2 Compute a model M of P using an Answer Set Solver such as
dlv or Prolog

3 Extract a solution for I from M

A positive logic program P consists of a finite set of clauses
called rules consisting of atoms a, bi in a first order language
of the form

a← b1, . . . , bm

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Proof Calculi of Universal Horn Formulae

1 (Rules)
(n ∈ N, ϕ1, . . . , ϕn, ϕ atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn ∨ ϕ)

As in classical logic,
ϕ← ϕ0, . . . , ϕn ≡ ϕ ∨ ¬ϕ0 ∨ ¬ϕ1 ∨ · · · ∨ ¬ϕn.

2 (Goals)
(n ∈ N, ϕ0, . . . , ϕn atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn)

3 (Conjunction)

ϕ ψ

(ϕ ∧ ψ)
4 (Universal Extension)

ϕ

∀x , ϕ
5 (Selective Linear Definite (SLD) resolution)

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Proof Calculi of Universal Horn Formulae

1 (Rules)
(n ∈ N, ϕ1, . . . , ϕn, ϕ atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn ∨ ϕ)
As in classical logic,
ϕ← ϕ0, . . . , ϕn ≡ ϕ ∨ ¬ϕ0 ∨ ¬ϕ1 ∨ · · · ∨ ¬ϕn.

2 (Goals)
(n ∈ N, ϕ0, . . . , ϕn atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn)

3 (Conjunction)

ϕ ψ

(ϕ ∧ ψ)
4 (Universal Extension)

ϕ

∀x , ϕ
5 (Selective Linear Definite (SLD) resolution)

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Proof Calculi of Universal Horn Formulae

1 (Rules)
(n ∈ N, ϕ1, . . . , ϕn, ϕ atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn ∨ ϕ)
As in classical logic,
ϕ← ϕ0, . . . , ϕn ≡ ϕ ∨ ¬ϕ0 ∨ ¬ϕ1 ∨ · · · ∨ ¬ϕn.

2 (Goals)
(n ∈ N, ϕ0, . . . , ϕn atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn)

3 (Conjunction)

ϕ ψ

(ϕ ∧ ψ)
4 (Universal Extension)

ϕ

∀x , ϕ
5 (Selective Linear Definite (SLD) resolution)

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Proof Calculi of Universal Horn Formulae

1 (Rules)
(n ∈ N, ϕ1, . . . , ϕn, ϕ atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn ∨ ϕ)
As in classical logic,
ϕ← ϕ0, . . . , ϕn ≡ ϕ ∨ ¬ϕ0 ∨ ¬ϕ1 ∨ · · · ∨ ¬ϕn.

2 (Goals)
(n ∈ N, ϕ0, . . . , ϕn atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn)

3 (Conjunction)

ϕ ψ

(ϕ ∧ ψ)

4 (Universal Extension)
ϕ

∀x , ϕ
5 (Selective Linear Definite (SLD) resolution)

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Proof Calculi of Universal Horn Formulae

1 (Rules)
(n ∈ N, ϕ1, . . . , ϕn, ϕ atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn ∨ ϕ)
As in classical logic,
ϕ← ϕ0, . . . , ϕn ≡ ϕ ∨ ¬ϕ0 ∨ ¬ϕ1 ∨ · · · ∨ ¬ϕn.

2 (Goals)
(n ∈ N, ϕ0, . . . , ϕn atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn)

3 (Conjunction)

ϕ ψ

(ϕ ∧ ψ)
4 (Universal Extension)

ϕ

∀x , ϕ

5 (Selective Linear Definite (SLD) resolution)

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Proof Calculi of Universal Horn Formulae

1 (Rules)
(n ∈ N, ϕ1, . . . , ϕn, ϕ atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn ∨ ϕ)
As in classical logic,
ϕ← ϕ0, . . . , ϕn ≡ ϕ ∨ ¬ϕ0 ∨ ¬ϕ1 ∨ · · · ∨ ¬ϕn.

2 (Goals)
(n ∈ N, ϕ0, . . . , ϕn atomic)

(¬ϕ0 ∨ · · · ∨ ¬ϕn)

3 (Conjunction)

ϕ ψ

(ϕ ∧ ψ)
4 (Universal Extension)

ϕ

∀x , ϕ
5 (Selective Linear Definite (SLD) resolution)

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Resolution Of Definite Clauses

We resolve definite clauses by way of the most general unifier
(mgu) θ (e.g. a substitution that makes two or more atoms
identical)

In Prolog, we produce a proof tree using SLDR and resolve
via DFS.
Each node is a stack of negative literals to be resolved
Prolog resolves the top literal from the stack against the head
literal of every clause in the program, which are potentially
complementary unifiable, and are searched top to bottom
If the top literal is unifiable by mgu θ, with the head of clause
C , we pop L from the stack, and push body(C) onto the
stack, substituting θ to all literals
If no clause is unifiable with the L, the search backtracks to
the last point (whence DFS)
If the stack is emptied, we derive nil, whence we return true;
else, the stack is not emptied after our search, whence we
return false

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Resolution Of Definite Clauses

We resolve definite clauses by way of the most general unifier
(mgu) θ (e.g. a substitution that makes two or more atoms
identical)
In Prolog, we produce a proof tree using SLDR and resolve
via DFS.

Each node is a stack of negative literals to be resolved
Prolog resolves the top literal from the stack against the head
literal of every clause in the program, which are potentially
complementary unifiable, and are searched top to bottom
If the top literal is unifiable by mgu θ, with the head of clause
C , we pop L from the stack, and push body(C) onto the
stack, substituting θ to all literals
If no clause is unifiable with the L, the search backtracks to
the last point (whence DFS)
If the stack is emptied, we derive nil, whence we return true;
else, the stack is not emptied after our search, whence we
return false

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Resolution Of Definite Clauses

We resolve definite clauses by way of the most general unifier
(mgu) θ (e.g. a substitution that makes two or more atoms
identical)
In Prolog, we produce a proof tree using SLDR and resolve
via DFS.
Each node is a stack of negative literals to be resolved

Prolog resolves the top literal from the stack against the head
literal of every clause in the program, which are potentially
complementary unifiable, and are searched top to bottom
If the top literal is unifiable by mgu θ, with the head of clause
C , we pop L from the stack, and push body(C) onto the
stack, substituting θ to all literals
If no clause is unifiable with the L, the search backtracks to
the last point (whence DFS)
If the stack is emptied, we derive nil, whence we return true;
else, the stack is not emptied after our search, whence we
return false

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Resolution Of Definite Clauses

We resolve definite clauses by way of the most general unifier
(mgu) θ (e.g. a substitution that makes two or more atoms
identical)
In Prolog, we produce a proof tree using SLDR and resolve
via DFS.
Each node is a stack of negative literals to be resolved
Prolog resolves the top literal from the stack against the head
literal of every clause in the program, which are potentially
complementary unifiable, and are searched top to bottom

If the top literal is unifiable by mgu θ, with the head of clause
C , we pop L from the stack, and push body(C) onto the
stack, substituting θ to all literals
If no clause is unifiable with the L, the search backtracks to
the last point (whence DFS)
If the stack is emptied, we derive nil, whence we return true;
else, the stack is not emptied after our search, whence we
return false

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Resolution Of Definite Clauses

We resolve definite clauses by way of the most general unifier
(mgu) θ (e.g. a substitution that makes two or more atoms
identical)
In Prolog, we produce a proof tree using SLDR and resolve
via DFS.
Each node is a stack of negative literals to be resolved
Prolog resolves the top literal from the stack against the head
literal of every clause in the program, which are potentially
complementary unifiable, and are searched top to bottom
If the top literal is unifiable by mgu θ, with the head of clause
C , we pop L from the stack, and push body(C) onto the
stack, substituting θ to all literals

If no clause is unifiable with the L, the search backtracks to
the last point (whence DFS)
If the stack is emptied, we derive nil, whence we return true;
else, the stack is not emptied after our search, whence we
return false

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Resolution Of Definite Clauses

We resolve definite clauses by way of the most general unifier
(mgu) θ (e.g. a substitution that makes two or more atoms
identical)
In Prolog, we produce a proof tree using SLDR and resolve
via DFS.
Each node is a stack of negative literals to be resolved
Prolog resolves the top literal from the stack against the head
literal of every clause in the program, which are potentially
complementary unifiable, and are searched top to bottom
If the top literal is unifiable by mgu θ, with the head of clause
C , we pop L from the stack, and push body(C) onto the
stack, substituting θ to all literals
If no clause is unifiable with the L, the search backtracks to
the last point (whence DFS)

If the stack is emptied, we derive nil, whence we return true;
else, the stack is not emptied after our search, whence we
return false

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Resolution Of Definite Clauses

We resolve definite clauses by way of the most general unifier
(mgu) θ (e.g. a substitution that makes two or more atoms
identical)
In Prolog, we produce a proof tree using SLDR and resolve
via DFS.
Each node is a stack of negative literals to be resolved
Prolog resolves the top literal from the stack against the head
literal of every clause in the program, which are potentially
complementary unifiable, and are searched top to bottom
If the top literal is unifiable by mgu θ, with the head of clause
C , we pop L from the stack, and push body(C) onto the
stack, substituting θ to all literals
If no clause is unifiable with the L, the search backtracks to
the last point (whence DFS)
If the stack is emptied, we derive nil, whence we return true;
else, the stack is not emptied after our search, whence we
return false

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Model Semantics Of P

Let P be a (positive) logic program.
A Herbrand universe of P, denoted by HU(P), consists of the
set of all terms formed by the language LP .

A Herbrand base of P, denoted by HB(P), consists of all
ground atoms formed from predicates in P and terms in
HU(P), such that an interpretation over HU(P) is simply a
subset I ⊆ HB(P) may be understood a set of of grounds
atoms true in a given scenario.
An interpretation M may be a model of

1 a ground clause C ≡ a← b1, . . . , bn if {b1, . . . , bn} 6⊆ M or
a ∈ M, denoted by M |= C ;

2 a clause C if M |= C ′ for all C ′ ∈ grnd(C), the set of all
ground instances of C appearing in HU(P);

3 a program P if M |= C for all clauses C ∈ P.

A model M of P is minimal if there is no model N of P such
that N (M. The answer set of P is the minimal model of P.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Model Semantics Of P

Let P be a (positive) logic program.
A Herbrand universe of P, denoted by HU(P), consists of the
set of all terms formed by the language LP .
A Herbrand base of P, denoted by HB(P), consists of all
ground atoms formed from predicates in P and terms in
HU(P), such that an interpretation over HU(P) is simply a
subset I ⊆ HB(P) may be understood a set of of grounds
atoms true in a given scenario.

An interpretation M may be a model of
1 a ground clause C ≡ a← b1, . . . , bn if {b1, . . . , bn} 6⊆ M or

a ∈ M, denoted by M |= C ;
2 a clause C if M |= C ′ for all C ′ ∈ grnd(C), the set of all

ground instances of C appearing in HU(P);
3 a program P if M |= C for all clauses C ∈ P.

A model M of P is minimal if there is no model N of P such
that N (M. The answer set of P is the minimal model of P.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Model Semantics Of P

Let P be a (positive) logic program.
A Herbrand universe of P, denoted by HU(P), consists of the
set of all terms formed by the language LP .
A Herbrand base of P, denoted by HB(P), consists of all
ground atoms formed from predicates in P and terms in
HU(P), such that an interpretation over HU(P) is simply a
subset I ⊆ HB(P) may be understood a set of of grounds
atoms true in a given scenario.
An interpretation M may be a model of

1 a ground clause C ≡ a← b1, . . . , bn if {b1, . . . , bn} 6⊆ M or
a ∈ M, denoted by M |= C ;

2 a clause C if M |= C ′ for all C ′ ∈ grnd(C), the set of all
ground instances of C appearing in HU(P);

3 a program P if M |= C for all clauses C ∈ P.

A model M of P is minimal if there is no model N of P such
that N (M. The answer set of P is the minimal model of P.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Model Semantics Of P

Let P be a (positive) logic program.
A Herbrand universe of P, denoted by HU(P), consists of the
set of all terms formed by the language LP .
A Herbrand base of P, denoted by HB(P), consists of all
ground atoms formed from predicates in P and terms in
HU(P), such that an interpretation over HU(P) is simply a
subset I ⊆ HB(P) may be understood a set of of grounds
atoms true in a given scenario.
An interpretation M may be a model of

1 a ground clause C ≡ a← b1, . . . , bn if {b1, . . . , bn} 6⊆ M or
a ∈ M, denoted by M |= C ;

2 a clause C if M |= C ′ for all C ′ ∈ grnd(C), the set of all
ground instances of C appearing in HU(P);

3 a program P if M |= C for all clauses C ∈ P.

A model M of P is minimal if there is no model N of P such
that N (M. The answer set of P is the minimal model of P.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Model Semantics Of P

Let P be a (positive) logic program.
A Herbrand universe of P, denoted by HU(P), consists of the
set of all terms formed by the language LP .
A Herbrand base of P, denoted by HB(P), consists of all
ground atoms formed from predicates in P and terms in
HU(P), such that an interpretation over HU(P) is simply a
subset I ⊆ HB(P) may be understood a set of of grounds
atoms true in a given scenario.
An interpretation M may be a model of

1 a ground clause C ≡ a← b1, . . . , bn if {b1, . . . , bn} 6⊆ M or
a ∈ M, denoted by M |= C ;

2 a clause C if M |= C ′ for all C ′ ∈ grnd(C), the set of all
ground instances of C appearing in HU(P);

3 a program P if M |= C for all clauses C ∈ P.

A model M of P is minimal if there is no model N of P such
that N (M. The answer set of P is the minimal model of P.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Model Semantics Of P

Let P be a (positive) logic program.
A Herbrand universe of P, denoted by HU(P), consists of the
set of all terms formed by the language LP .
A Herbrand base of P, denoted by HB(P), consists of all
ground atoms formed from predicates in P and terms in
HU(P), such that an interpretation over HU(P) is simply a
subset I ⊆ HB(P) may be understood a set of of grounds
atoms true in a given scenario.
An interpretation M may be a model of

1 a ground clause C ≡ a← b1, . . . , bn if {b1, . . . , bn} 6⊆ M or
a ∈ M, denoted by M |= C ;

2 a clause C if M |= C ′ for all C ′ ∈ grnd(C), the set of all
ground instances of C appearing in HU(P);

3 a program P if M |= C for all clauses C ∈ P.

A model M of P is minimal if there is no model N of P such
that N (M.

The answer set of P is the minimal model of P.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Model Semantics Of P

Let P be a (positive) logic program.
A Herbrand universe of P, denoted by HU(P), consists of the
set of all terms formed by the language LP .
A Herbrand base of P, denoted by HB(P), consists of all
ground atoms formed from predicates in P and terms in
HU(P), such that an interpretation over HU(P) is simply a
subset I ⊆ HB(P) may be understood a set of of grounds
atoms true in a given scenario.
An interpretation M may be a model of

1 a ground clause C ≡ a← b1, . . . , bn if {b1, . . . , bn} 6⊆ M or
a ∈ M, denoted by M |= C ;

2 a clause C if M |= C ′ for all C ′ ∈ grnd(C), the set of all
ground instances of C appearing in HU(P);

3 a program P if M |= C for all clauses C ∈ P.

A model M of P is minimal if there is no model N of P such
that N (M. The answer set of P is the minimal model of P.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Minimal Model Computation and Negation

We iteratively compute LM(P) by the immediate consequence
operator, where TP : 2HB(P) → 2HB(P) is defined by

I 7→ {a | ∃(a← b1, . . . , bn) ∈ Gnd(P), {b1, . . . , bm} ⊆ I}

under TP , for all founded atoms in the body of a rule r , then a
will be founded.
We extend positive logic programs to normal logic programs by
adding a notion of negation different from negation in classical
logic, interpreted as Negation as failure with falsity denoted by
fail , and where one considers nota(·) to be true if no
corresponding positive literal a(·) can be finitely proved
through SLD resolution.
An interpretation I of P with naf is an answer set if and only if
I is the reduct program
P I := {head(r)← pos(r) | r ∈ P, I ∩ neg(r) = ∅}

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Minimal Model Computation and Negation

We iteratively compute LM(P) by the immediate consequence
operator, where TP : 2HB(P) → 2HB(P) is defined by

I 7→ {a | ∃(a← b1, . . . , bn) ∈ Gnd(P), {b1, . . . , bm} ⊆ I}

under TP , for all founded atoms in the body of a rule r , then a
will be founded.

We extend positive logic programs to normal logic programs by
adding a notion of negation different from negation in classical
logic, interpreted as Negation as failure with falsity denoted by
fail , and where one considers nota(·) to be true if no
corresponding positive literal a(·) can be finitely proved
through SLD resolution.
An interpretation I of P with naf is an answer set if and only if
I is the reduct program
P I := {head(r)← pos(r) | r ∈ P, I ∩ neg(r) = ∅}

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Minimal Model Computation and Negation

We iteratively compute LM(P) by the immediate consequence
operator, where TP : 2HB(P) → 2HB(P) is defined by

I 7→ {a | ∃(a← b1, . . . , bn) ∈ Gnd(P), {b1, . . . , bm} ⊆ I}

under TP , for all founded atoms in the body of a rule r , then a
will be founded.
We extend positive logic programs to normal logic programs by
adding a notion of negation different from negation in classical
logic, interpreted as Negation as failure with falsity denoted by
fail , and where one considers nota(·) to be true if no
corresponding positive literal a(·) can be finitely proved
through SLD resolution.

An interpretation I of P with naf is an answer set if and only if
I is the reduct program
P I := {head(r)← pos(r) | r ∈ P, I ∩ neg(r) = ∅}

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Minimal Model Computation and Negation

We iteratively compute LM(P) by the immediate consequence
operator, where TP : 2HB(P) → 2HB(P) is defined by

I 7→ {a | ∃(a← b1, . . . , bn) ∈ Gnd(P), {b1, . . . , bm} ⊆ I}

under TP , for all founded atoms in the body of a rule r , then a
will be founded.
We extend positive logic programs to normal logic programs by
adding a notion of negation different from negation in classical
logic, interpreted as Negation as failure with falsity denoted by
fail , and where one considers nota(·) to be true if no
corresponding positive literal a(·) can be finitely proved
through SLD resolution.
An interpretation I of P with naf is an answer set if and only if
I is the reduct program
P I := {head(r)← pos(r) | r ∈ P, I ∩ neg(r) = ∅}

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Deciding whether a given program P has a stable model is
NP − complete

This amounts to guessing a stable candidate M, checking in
polynomial time if M is stable by verifying that the set of
unfounded atoms in M is empty, where an unfounded atom a
is the head of some rule r such that either an atom b appears
as a positive literal in the body of r which is such that either
b /∈ M or b is also unfounded, or b appears as a negative
literal in the body of r such that b ∈ M.

Introducing functions can make this undecidable, as we may
have models of infinite size. Consider the program F :

p(a)

p(f (X))← p(X)

Gnd(F) = {p(a), p(f (a))← p(a), p(f (f (a)))← p(f (a)), . . .} is
infinite, and is the unique stable model. For non-ground programs
with function symbols, this problem becomes as difficult as the
Halting program.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Deciding whether a given program P has a stable model is
NP − complete

This amounts to guessing a stable candidate M, checking in
polynomial time if M is stable by verifying that the set of
unfounded atoms in M is empty, where an unfounded atom a
is the head of some rule r such that either an atom b appears
as a positive literal in the body of r which is such that either
b /∈ M or b is also unfounded, or b appears as a negative
literal in the body of r such that b ∈ M.
Introducing functions can make this undecidable, as we may
have models of infinite size. Consider the program F :

p(a)

p(f (X))← p(X)

Gnd(F) = {p(a), p(f (a))← p(a), p(f (f (a)))← p(f (a)), . . .} is
infinite, and is the unique stable model. For non-ground programs
with function symbols, this problem becomes as difficult as the
Halting program.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Example: 3 Coloring

We can consider the ASP approach to the problem of
computing legal 3-colorings of a graph G = (V ,E).

We store the facts of our graph as node(n) for each n ∈ V
and edge(n,m) for each (n,m) ∈ E .
The general specification for solutions is then

red(X)← node(X), notgreen(X), notblue(X)

green(X)← node(X), notblue(X), notred(X)

blue(X)← node(X), notred(X), notgreen(X)

with a single disjunctive rule

blue(X) ∨ red(X) ∨ green(x)← node(X)

The Answer Sets will correspond to all legal 3-colorings of G .

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Example: 3 Coloring

We can consider the ASP approach to the problem of
computing legal 3-colorings of a graph G = (V ,E).
We store the facts of our graph as node(n) for each n ∈ V
and edge(n,m) for each (n,m) ∈ E .

The general specification for solutions is then

red(X)← node(X), notgreen(X), notblue(X)

green(X)← node(X), notblue(X), notred(X)

blue(X)← node(X), notred(X), notgreen(X)

with a single disjunctive rule

blue(X) ∨ red(X) ∨ green(x)← node(X)

The Answer Sets will correspond to all legal 3-colorings of G .

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Example: 3 Coloring

We can consider the ASP approach to the problem of
computing legal 3-colorings of a graph G = (V ,E).
We store the facts of our graph as node(n) for each n ∈ V
and edge(n,m) for each (n,m) ∈ E .
The general specification for solutions is then

red(X)← node(X), notgreen(X), notblue(X)

green(X)← node(X), notblue(X), notred(X)

blue(X)← node(X), notred(X), notgreen(X)

with a single disjunctive rule

blue(X) ∨ red(X) ∨ green(x)← node(X)

The Answer Sets will correspond to all legal 3-colorings of G .

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Example: 3 Coloring

We can consider the ASP approach to the problem of
computing legal 3-colorings of a graph G = (V ,E).
We store the facts of our graph as node(n) for each n ∈ V
and edge(n,m) for each (n,m) ∈ E .
The general specification for solutions is then

red(X)← node(X), notgreen(X), notblue(X)

green(X)← node(X), notblue(X), notred(X)

blue(X)← node(X), notred(X), notgreen(X)

with a single disjunctive rule

blue(X) ∨ red(X) ∨ green(x)← node(X)

The Answer Sets will correspond to all legal 3-colorings of G .

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Time Dependent Programs

A time-dependent program $〈 P, τ〉 $ over σ consists of P , an
answer set program over σ, and τ ⊆ π is a set of time
dependent predicates.

A t-grounding of a time-dependent literal l , denoted by
Gnd(l)t , is either l if l ∈ Lit(P)\FP, and otherwise, the
variable in targ (l) is replaced by t.The t-grounding of the
literals L is Gnd(L)t =

⋃
l∈L

Gnd(l)t .

The t-grounding of a rule is $Gnd(r)t=Gnd(head(r)t)←
Gnd(pos(r))t, not Gnd(neg(r))t$
The t-grounding of P is

Gnd(P)tmax = Gnd({Gnd(r)t′ | r ∈ P, t ′ ∈ N, t ′ ≤ tmax})

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Time Dependent Programs

A time-dependent program $〈 P, τ〉 $ over σ consists of P , an
answer set program over σ, and τ ⊆ π is a set of time
dependent predicates.
A t-grounding of a time-dependent literal l , denoted by
Gnd(l)t , is either l if l ∈ Lit(P)\FP, and otherwise, the
variable in targ (l) is replaced by t.

The t-grounding of the
literals L is Gnd(L)t =

⋃
l∈L

Gnd(l)t .

The t-grounding of a rule is $Gnd(r)t=Gnd(head(r)t)←
Gnd(pos(r))t, not Gnd(neg(r))t$
The t-grounding of P is

Gnd(P)tmax = Gnd({Gnd(r)t′ | r ∈ P, t ′ ∈ N, t ′ ≤ tmax})

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Time Dependent Programs

A time-dependent program $〈 P, τ〉 $ over σ consists of P , an
answer set program over σ, and τ ⊆ π is a set of time
dependent predicates.
A t-grounding of a time-dependent literal l , denoted by
Gnd(l)t , is either l if l ∈ Lit(P)\FP, and otherwise, the
variable in targ (l) is replaced by t.The t-grounding of the
literals L is Gnd(L)t =

⋃
l∈L

Gnd(l)t .

The t-grounding of a rule is $Gnd(r)t=Gnd(head(r)t)←
Gnd(pos(r))t, not Gnd(neg(r))t$
The t-grounding of P is

Gnd(P)tmax = Gnd({Gnd(r)t′ | r ∈ P, t ′ ∈ N, t ′ ≤ tmax})

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Time Dependent Programs

A time-dependent program $〈 P, τ〉 $ over σ consists of P , an
answer set program over σ, and τ ⊆ π is a set of time
dependent predicates.
A t-grounding of a time-dependent literal l , denoted by
Gnd(l)t , is either l if l ∈ Lit(P)\FP, and otherwise, the
variable in targ (l) is replaced by t.The t-grounding of the
literals L is Gnd(L)t =

⋃
l∈L

Gnd(l)t .

The t-grounding of a rule is $Gnd(r)t=Gnd(head(r)t)←
Gnd(pos(r))t, not Gnd(neg(r))t$

The t-grounding of P is

Gnd(P)tmax = Gnd({Gnd(r)t′ | r ∈ P, t ′ ∈ N, t ′ ≤ tmax})

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Time Dependent Programs

A time-dependent program $〈 P, τ〉 $ over σ consists of P , an
answer set program over σ, and τ ⊆ π is a set of time
dependent predicates.
A t-grounding of a time-dependent literal l , denoted by
Gnd(l)t , is either l if l ∈ Lit(P)\FP, and otherwise, the
variable in targ (l) is replaced by t.The t-grounding of the
literals L is Gnd(L)t =

⋃
l∈L

Gnd(l)t .

The t-grounding of a rule is $Gnd(r)t=Gnd(head(r)t)←
Gnd(pos(r))t, not Gnd(neg(r))t$
The t-grounding of P is

Gnd(P)tmax = Gnd({Gnd(r)t′ | r ∈ P, t ′ ∈ N, t ′ ≤ tmax})

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Example of a Time Dependent Program

time(0...M)
q@T :- p@(T-1),time(T),T(T-1)
v@T :- q@(T-1), not w@T,time(T),time(T-1)
q@T :- not v@T,r(X), time(T), time(T-1)
p@T :- time(T)
r(start).

This program depends on the time boundary M, and grows
exponentially with M
Finding steady states by brute force by estimating a time
upper bound, grounding, and solving the program with the
bound generally leads to a suboptimal solving time.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Example of a Time Dependent Program

time(0...M)
q@T :- p@(T-1),time(T),T(T-1)
v@T :- q@(T-1), not w@T,time(T),time(T-1)
q@T :- not v@T,r(X), time(T), time(T-1)
p@T :- time(T)
r(start).

This program depends on the time boundary M, and grows
exponentially with M

Finding steady states by brute force by estimating a time
upper bound, grounding, and solving the program with the
bound generally leads to a suboptimal solving time.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Example of a Time Dependent Program

time(0...M)
q@T :- p@(T-1),time(T),T(T-1)
v@T :- q@(T-1), not w@T,time(T),time(T-1)
q@T :- not v@T,r(X), time(T), time(T-1)
p@T :- time(T)
r(start).

This program depends on the time boundary M, and grows
exponentially with M
Finding steady states by brute force by estimating a time
upper bound, grounding, and solving the program with the
bound generally leads to a suboptimal solving time.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

States and Trajectories

Given P, and an answer set I of Gnd(P)tmax , the state of I at t
is I t := {l | l ∈ I , targ (l) = t},

i.e. the state of ground
time-dependent literals in I grounded with T in the time
argument.
The trajectory of I is defined as $TI=〈 I0... Itmax〉$
We can find all steady states and cycles efficiently by
transforming our program into a Markovian program and then
solving for ground programs incrementally.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

States and Trajectories

Given P, and an answer set I of Gnd(P)tmax , the state of I at t
is I t := {l | l ∈ I , targ (l) = t},i.e. the state of ground
time-dependent literals in I grounded with T in the time
argument.

The trajectory of I is defined as $TI=〈 I0... Itmax〉$
We can find all steady states and cycles efficiently by
transforming our program into a Markovian program and then
solving for ground programs incrementally.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

States and Trajectories

Given P, and an answer set I of Gnd(P)tmax , the state of I at t
is I t := {l | l ∈ I , targ (l) = t},i.e. the state of ground
time-dependent literals in I grounded with T in the time
argument.
The trajectory of I is defined as $TI=〈 I0... Itmax〉$

We can find all steady states and cycles efficiently by
transforming our program into a Markovian program and then
solving for ground programs incrementally.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

States and Trajectories

Given P, and an answer set I of Gnd(P)tmax , the state of I at t
is I t := {l | l ∈ I , targ (l) = t},i.e. the state of ground
time-dependent literals in I grounded with T in the time
argument.
The trajectory of I is defined as $TI=〈 I0... Itmax〉$
We can find all steady states and cycles efficiently by
transforming our program into a Markovian program and then
solving for ground programs incrementally.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

States and Trajectories

Given P, and an answer set I of Gnd(P)tmax , the state of I at t
is I t := {l | l ∈ I , targ (l) = t},i.e. the state of ground
time-dependent literals in I grounded with T in the time
argument.
The trajectory of I is defined as $TI=〈 I0... Itmax〉$
We can find all steady states and cycles efficiently by
transforming our program into a Markovian program and then
solving for ground programs incrementally.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Markovian Programs

A Markovian program is a time dependent program P if and
only if for every r ∈ P with h(r) ∈ Lit(P)τ and t ∈ N

1 targ (head(r)) ∈ C ∪ V
2 for all l ∈ Lit(r) ∩ Lit(P)τ , either targ (Gnd(head(r))t) or

$$targ(Gnd(head(r))t)=targ(Gnd(l)t)+1$

Rules are divided into two subsets: those that describe
temporal relationships
Pτ = {r | r ∈ P, (head(r) ∪ Lit(r)) ∩ Lit(P)τ 6= ∅}, and those
that don’t.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Markovian Programs

A Markovian program is a time dependent program P if and
only if for every r ∈ P with h(r) ∈ Lit(P)τ and t ∈ N

1 targ (head(r)) ∈ C ∪ V
2 for all l ∈ Lit(r) ∩ Lit(P)τ , either targ (Gnd(head(r))t) or

$$targ(Gnd(head(r))t)=targ(Gnd(l)t)+1$

Rules are divided into two subsets: those that describe
temporal relationships
Pτ = {r | r ∈ P, (head(r) ∪ Lit(r)) ∩ Lit(P)τ 6= ∅}, and those
that don’t.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Partial Groundings and Reducts

The partial temporal grounding of P at t is defined as
Pt = {Gnd(r)t | r ∈ P, head(r) ∈
Lit(P)τ , targ (Gnd(head(r))t) = t}

i.e. the set of t-grounds
rules whose head depends on t
A partial reduct of a ground program P wrt interpretation I,
with PI = {l ← . | l ∈ I} and head(P\PI = is defined as
R I (P) := {head(r)← (pos(r)\I , notneg(r). | r ∈
P\PI , neg(r) ∩ I = ∅}

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Partial Groundings and Reducts

The partial temporal grounding of P at t is defined as
Pt = {Gnd(r)t | r ∈ P, head(r) ∈
Lit(P)τ , targ (Gnd(head(r))t) = t} i.e. the set of t-grounds
rules whose head depends on t

A partial reduct of a ground program P wrt interpretation I,
with PI = {l ← . | l ∈ I} and head(P\PI = is defined as
R I (P) := {head(r)← (pos(r)\I , notneg(r). | r ∈
P\PI , neg(r) ∩ I = ∅}

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Partial Groundings and Reducts

The partial temporal grounding of P at t is defined as
Pt = {Gnd(r)t | r ∈ P, head(r) ∈
Lit(P)τ , targ (Gnd(head(r))t) = t} i.e. the set of t-grounds
rules whose head depends on t
A partial reduct of a ground program P wrt interpretation I,
with PI = {l ← . | l ∈ I} and head(P\PI = is defined as
R I (P) := {head(r)← (pos(r)\I , notneg(r). | r ∈
P\PI , neg(r) ∩ I = ∅}

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Efficiency of Markov Programs

THEOREM Let P be a Markovian program and let Gnd(P)tmax

be a tmax grounding of P for tmax ∈ N. Then the set of

answer sets for Gnd(Ptmax) is {
tmax⋃
i=−1

B i | B−1 ∈

AS(Pe) and fort ∈ [tmax],B
t ∈ AS(RBt−1∪B−1

(P ′t)} with
P ′t = Gnd(Pt ∪ {l ← . | l ∈ Bt−1 ∪ B−1}).

1 Solve Pe with environmental conditions, and initialize t=0
2 Obtain partial groundings for t and states at t
3 Update the list of trajectories with states found in 2.
4 Increment t
5 If any trajectories are not in a steady state or cycle, go to 2.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

Efficiency of Markov Programs

THEOREM Let P be a Markovian program and let Gnd(P)tmax

be a tmax grounding of P for tmax ∈ N. Then the set of

answer sets for Gnd(Ptmax) is {
tmax⋃
i=−1

B i | B−1 ∈

AS(Pe) and fort ∈ [tmax],B
t ∈ AS(RBt−1∪B−1

(P ′t)} with
P ′t = Gnd(Pt ∪ {l ← . | l ∈ Bt−1 ∪ B−1}).

1 Solve Pe with environmental conditions, and initialize t=0
2 Obtain partial groundings for t and states at t
3 Update the list of trajectories with states found in 2.
4 Increment t
5 If any trajectories are not in a steady state or cycle, go to 2.

logostheorist Time-Dependent Programming In the Answer Set Programming Paradigm

