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Abstract. The generalization of cohesive topos theory is among homotopy type theory’s many promising

aspects. Cohesion can be understood as generalizing a notion of geometric structure, and the implementation

of homotopy type theory in languages such as Agda and Coq enables automated proof checking for formerly
inaccessible objects such as line bundles. Meant as a mostly self contained introduction to the subject this

paper is divided into 2 somewhat asymmetrical sections. Section I provides a more or less complete account
of the categorical tools and vocabulary necessary to understand cohesion with a type theoretic flavour.

Section II elaborates on what is meant by cohesion, focusing on Lawvere’s seminal paper [11] on axiomatic

cohesion, and provides two rather illuminating examples which are developed throughout Section I. Intended
as a self-contained exposition and introduction to the subject, this paper aims to equip readers with the

vocabulary and some working intuition when approaching current open problems in cohesive homotopy type

theory. No new results are provided, and several of the proofs presented contain gaps meant for the reader
to fill.
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1. Preliminaries

This section exists for readers who are unfamiliar with category theory and topos theory. If you are
already familiar with this material, you will be able to skip ahead to section II without difficulty. The defi-
nitions are incrementally provided in order to develop cohesion from its essential, irreducible pieces.1 Along
the way, an immense amount of categorical machinery will be introduced, but always with the motivation of
providing sense to the following idea:

Cohesion is an adjoint triple of modalites over a category of objects possessing a structure of
interest, which also has a rich enough internal structure such that one can do mathematics,
and where the modalities identify distinct full subcategories such that the composition of
modalities expresses a dynamic transformation of the structure of interest.

What exactly is meant by modalities, internal structure of interest (and one that allows one to do mathe-
matics), as well as full subcategories will all be explored, and given several concrete examples. Additionally,
a multitude of footnotes are provided for those readers who may not be familiar with homotopy type theory
or other categorical ideas whose introduction would interrupt the flow of the paper.

The central example developed throughout the paper is the case of directed reflexive graphs. The
exposition of this category, from its introduction as a category in its own right, to a subcategory of a specific
presheaf category, to a topos, to a coherent topos, only incidentally happened to lend this paper a spine
similar to the core concept of cohesion.

In all, this section should be read as a rather self-contained collection of definitions, remarks and
examples such that a reader who has some passing familiarity with type theory, category theory, or homotopy
theory can find an ”in” to the wonderful world of cohesive homotopy type theory.

Furthermore, although many of these definitions, and a fuller exposition are given in [1, p. 383] with
a type theoretic flavour, readers who are still lost are recommended to look at [5], [9] and [6]. [5] is a great
text if you are coming to category theory as a mathematician; [9] is great if you’re coming to category theory
with an interest in logic; [6] is a friendly introduction if you prefer a computer science perspective to this
material.2 Moreover, the definitions presented here describe how category theory can be realized within type
theory.

1.1. Categories, Functors, and Natural Transformations In HoTT .

Definition. A precategory A consists of :

(1) A type A0 of objects. If a is an object of A0, we may denote this by a : A;
(2) for each a, b : A, a set3 HomA(a, b) of morphisms f : a→ b;
(3) for each a : A, a morphism 1a : HomA(a, a);
(4) for each a, b, c : A, a function g ◦ f : HomA(b, c)→ HomA(a, b)→ HomA(a, c);
(5) for each a, b : A and f : HomA(a, b), f = 1b ◦ f and f = f ◦ 1a;
(6) for each a, b, c, d : A and f : HomA(a, b), g : HomA(b, c), and h : HomA(c, d), h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Definition. f : HomA(a, b) is an isomorphism if there is a g : HomA(b, a) such that g ◦f = 1a and f ◦g = 1b.
The type of these isomorphisms is denoted by a ∼= b.

Since all hom-sets are sets, the identity types of hom-sets are mere propositions. With a little effort4,
it can be shown that f : a ∼= b is a mere proposition. Moreover, if A is a precategory and a, b : A, then by
induction on identity, we have idtoiso : (a = b)→ (a ∼= b), which recognizes that a path between objects is
an isomorphism.

1In this case, distinct categorical constructions.
2Though the perspective is mathematical, many of Awodey’s exercises will feel naturally motivated for a computer scientist.
3In category theory, this can very well be a class of morphisms f : a → b, although for the purposes of cohesion, having the
class of morphisms between objects behave as sets suffices.
4Supposing we have f : HomA(a, b), g, g′ : HomA(b, a), η, η′ : (1a = g ◦ f), ε, ε′ : (f ◦ g = 1b),

g = g ◦ 1b = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = 1a ◦ g′ = g′

using ε′, η. This establishes that g = g′ and moreover that (g, η, ε) = (g′, η′, ε′). Moreover, the type a ∼= b is a set.
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Definition. A category is a precategory where idtoiso is an equivalence.5 So, by the univalent axiom,
we have that Set is a category, as are any precategories with set-level structures.

Here are some interesting categories which will appear throughout this paper:

Example. The category of groups, denoted Grp, has groups as objects, and group homomorphisms as
morphisms. This shouldn’t surprise the reader, as HomGrp(a, b) is the hom-set we all know and love.

Although it can be described as a subcategory of Grp, due to its ubiquity, we often find the need to
work with the category of abelian groups, which is denoted by Ab. Clearly the objects are abelian groups,
and the morphisms are group homomorphisms.

From the category of abelian groups, it is natural to find the category of rings,6 denoted by Ring.
This category has rings as its objects and ring homomorphisms as its morphisms. These rings need not be
commutative. For that, one can work within the category of commutative rings CRing.

Example. One very important category is the category of topologies, denoted by Top. Objects (a, τ) : Top
are pairs consisting of a : Set and a topology τ on a, satisfying the axioms of topology. The morphisms of
Top are continuous maps.

For geometers, the following related categories are incredibly important:

Example. The category of smooth manifolds, denoted by Diff, has paracompact smooth manifolds as
objects and smooth functions for morphisms. A closely related category is the category of cartesian spaces,
denoted by CartSp, whose objects are the cartesian spaces Rn, for n ∈ N, and whose morphisms consist of
suitable, structure preserving functions between these spaces.

It is common in the literature of this subject to see CartSp with a subscript indicating the structure of
cartesian spaces which these functions preserve. For instance CartSpsmooth regards Rn as smooth manifolds
with smooth functions as morphisms, while CartSplin regards Rn as real vector spaces, and has linear
functions as morphisms.

Example. Supposing that X is a topological space with topology τ , we can turn X into a category Θ(X)
by taking the open sets of X as objects and the inclusion relation ⊆ as the only morphism.

The enthusiastic reader can indeed verify that this forms a category, as indeed any partially ordered
set forms a category.

Example. An example that we will return to throughout this paper is the category of reflexive graphs,
denoted by RGph.

Now given that graphs have a bit of ambiguity in how they’re described, in the most general permissible
sense, the objects are graphs G, which consist of triples (V,E, d). V is a set of vertices, E is a set of edges,
and d : E ↪→ V × V . Moreover, for every a : V , there is an edge ea : E such that d(ea) = (a, a) (from which
we get the reflexivity).

5For readers unfamiliar with the type theoretic notion of equivalence, this is not the same as an equivalence relation! Recall that
given a map f : A→ B, quasi-inverse of f is a triple (g, α, β) consisting of a map g : B → A and homotopies α : f ◦ g ∼ idB
and β : g ◦ f ∼ idA. Moreover, the type of quasi-inverses of f is

qinv(f) :≡
∑

g:B→A
((f ◦ g ∼ idB)× (g ◦ f ∼ idA))

while equivalence from A→ B is a pair consisting of f : A→ B and (A ' B), where (by abuse of notation)

(A ' B) : isequiv(f) :≡

 ∑
g:B→A

(f ◦ g ∼ idB)

×( ∑
h:B→A

(h ◦ f ∼ idA)

)
,

which has the following properties:

(i) for each f : A→ B, there is a function qinv(f)→ isequiv(f);

(ii) for each f : A→ B, there is a function isequiv(f)→ qinv(f);
(iii) For any two e1, e2 : isequiv(f), there is a path e1 = e2.

It should be noted that

( ∑
g:B→A

(f ◦ g ∼ idB)

)
×
( ∑
h:B→A

(h ◦ f ∼ idA)

)
is only one of the easiest such definitions which

satisfies those properties; equivalences are defined by those properties. For a fuller account of equivalences from a type theoretic
perspective, refer to [1, p 162-175]
6One should be able to recall that rings are abelian groups with additional structure.
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When reasoning about different graphs, we denote the vertices of a graph G by G(V ) and the edges of
a graph G by G(E).

Furthermore, we may omit the d map, and consider G(E) as a set such that given a source and target
mapping s, t : G(E) → G(V ), we can identify e with a pair {a, b} where a, b : G(V ) and a = s(e) and
b = t(e).7 In what might seem like silly solipsism, but keeping in spirt with the idea that E is an embedding
in the cartesian product of G(V )×G(V ), we note e = {s(e), t(e)}.

Morphisms of RGph are graph homomorphisms f : G → H, i.e. a pair of morphisms (f1 : G(V ) →
H(V ), f2 : G(E)→ H(E)) such that f1(G(V )) ⊆ V (H) and if {a, b} : G(E) then {f1(a), f1(b)} : H (that is
to say, f2({a, b}) = {f1(a), f1(b)}).

Although it might be helpful to keep this construction in mind, we will revisit this category again, from
a purely categorical point of view.8

Example. Given any category A and an object a : A, the slice category A ↓ a has the morphisms with a
as the target as its objects, i.e. f : b → a are the objects of a slice category, and for objects f : b → a and
g : c→ a, the morphisms h : b→ c such that f = h ◦ g are the morphisms of the slice category. It is worth
illustrating why categories constructed in this matter earn this name; let a, b, c : A and let f, g : A ↓ a, such
that f : b→ a and g : a→ c, then h is a morphism of A ↓ a if

b

a

f

c

a

g

b c

a

f g

h

commutes.9

Dually, one can define a co-slice category by a ↓ A where the objects are the morphisms of A whose
source is a. For an instance of the utility of these constructions, consider for any commutative ring object
R : CRing the subcategory of the co-slice category R ↓ Ring where the objects are ring homomorphisms
f : R → A, such that A : Ring with unity, f ◦ 1R = 1A, and f(R) ⊆ Z(A), where Z(A) is the centre of A.
This defines the category of R-algebras!

Example. Given a category A, a full subcategory S of A is given by

(1) A type S0 of object, often denoted by S such that if a : S then a : A;
(2) for each a, b : S, a set HomS(a, b) of morphisms;
(3) for each a : S, a morphism 1a : HomS(a, a);
(4) for each a, b, c : S, a function g ◦ f : HomS(b, c)→ HomS(a, b)→ HomS(a, c);
(5) for each a, b : S and f : HomS(a, b), f = 1b ◦ f and f = f ◦ 1a;
(6) for each a, b, c, d : S and f : HomS(a, b), g : HomS(b, c) and h : HomS(c, d), h ◦ (g ◦ f) = (h ◦ g) ◦ f ;
(7) for each a, b : S, HomS(a, b) = HomA(a, b).

Conditions (1)-(6) determine a subcategory, while condition (7) in particular determines that S is a full
subcategory of A.

Moreover, there is a clear mapping from S to A, called the inclusion functor, which is an obvious
faithful functor taking objects and morphisms to themselves.

Definition. Let A,B be precategories. A covariant functor F : A→ B consists of:

(1) A function F0 : A0 → B0, denoted by F ;
(2) for each a, b : A, a function Fa,b : HomA(a, b)→ HomB(F (a), F (b)), also generally denoted by F ;
(3) for each a : A, F (1a) = 1F (a);
(4) for each a, b, c : A, f : HomA(a, b), g : HomA(b, c), F (g ◦ f) = F (g) ◦ F (f).

We similarly define a contravariant functor F by replacing (2) and (4) in the above definition as follows:

7Depending on whether we wish these graphs to be directed or undirected, we can insist on these pairs being ordered or not
8If you are a graph theory purist who finds this notation incorrect, please be patient. All will be motivated in time.
9Given the shape of the commuting diagram that the morphisms of this category satisfy, one can speculate about what foodstuff

inspired this category’s name.
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(2’) for each a, b : A, a function Fa,b : HomA(a, b)→ HomB(F (b), F (a)), also generally denoted by F ;

(4’) for each a, b, c : A, f : HomA(a, b), g : HomA(b, c), F (g ◦ f) = F (f) ◦ F (g).

Example. (Forgetful Functors) Perhaps the most intuitive examples of functors are those which take
the objects of category A to their underlying sets. We denote this functor by U . So for instance, both U :
Top→ Set and U : Grp→ Set are forgetful functors which take topological and group objects respectively to
their underlying sets, and ”forgetting” the structure-preserving property of their morphisms, while effectively
embedding their hom-sets.

More sophisticated forgetful functors, such as U : CRing → Ab which take commutative rings to their
underlying abelian groups and in the process ”forgetting” the multiplication preserving properties of ring
homomorphisms, while preserving ring addition properties.

Example. Functors need not always lose information!
In some cases, functors can be thought of as adding structure. For instance, let F,G : Set → Top be

two functors taking objects a : Set to the discrete and indiscrete topology of (a, τ) : Top respectively.
To see how F,G act on HomA(a, b), let a, b : Set and f : HomA(a, b). In both cases, any set function f

is made into a continuous function. For instance, in the indiscrete case, it is simply10 a matter of noticing
that [G(f)]−1(b) ⊆ a, whence [G(f)] is continuous, as was to be expected.11

This is also very easy to check in the discrete case, since the inverse image of any subset V can be
identified with the points mapping into V under f . Furthermore, the functoriality of F,G is easy enough to
check, and so it will be left to the interested reader.

The reader is also encouraged to verify that HomSet(a, b) ∼= HomTop(F (a), F (b)) ∼= HomTop(G(a), G(b)).
That is, F,G are full and faithful functors.

Example. One very important example of a contravariant functor is a presheaf F on a category A, given
as F : A → Set. It often makes more sense to write F : Aop → Set to convey the contravariance12 of this
functor (and to avoid confusion with the typical forgetful functors).

For instance, let X be a topological space. A set-valued presheaf of Θ(X) is the functor F : Θ(X)op →
Set which takes the subsets of X to themselves, and maps A ⊆ B to f : B → A. In particular, where X is a
terminal13 object in Θ(X), in the subcategory defined by this presheaf, F (X) = X is an initial object, and
the map F (⊆) : Set can be identified with the restriction map ρ : Set.

Definition. By induction on identity, we find that a functor preserve idtoiso. Now, if F,G : A → B are
functors, then a natural transformation α : F ⇒ G consists of

(1) (components) for each a : A, αa : HomB(F (a), G(a));
(2) (naturality) for each a, b : A and f : HomA(a, b), G(f) ◦ αa = αb ◦ F (f).

Although covering bi-categories is well beyond the scope of this paper, it is somewhat instructive to
note that one can compose functors and natural transformations.

Definition. Following [1], let A,B,C be categories and let F : A→ B and G,H : B → C be functors with
α : G → H. Then the composite (α �r F ) : G ◦ F → H ◦ F is a natural transformation with component
ηF (a) for each a : A. Similarly if G,H : B → A instead, then the composite (F �l α) : (F ◦G)→ (F ◦H) has
components F (αb) for each b : B.

Example. One intuitive example of natural transformations comes from studying the following endofunc-
tors 1Set, the identity endofunctor, and the endofunctor −× 1 : Set→ Set, defined as follows:

a : Set 7→ a× 1

10If one is truly pedantic, one can also check the preimage of the empty set ∅.
11It should be noted that this is generally not the case with indiscrete topologies, as any time we have a map from f : a→ b,
if b is a space which satisfies the T0 axiom, then the only continuous functions are constant maps. However, since indiscrete

topologies very clearly don’t satisfy this except in the most trivial cases, we’re golden!
12Indeed, to a category theorist, one really doesn’t need to say contravariant at all, and just note that the definition of

contravariance given above really only describes the dual category of A, denoted Aop, where objects of Aop are the objects of

A, and the morphisms of Aop are the morphisms of A with the source and target switched, i.e. f : a→ b in Aop is the same as
f : b→ a in A.
13i.e., for all objects a : Θ(X), there is a unique map a → X, namely a ⊆ X by definition. Similarly, we say that ∅ is initial
in Θ(X), since for all a : Θ(X), there is a unique map from ∅ to a, namely ∅ ⊆ a. For a full discussion on initial and terminal

objects, consult [6] or [9].
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and
f : a→ b 7→ f × 1 : a× 1→ b× 1

which takes sets a to the product a× 1 where 1 is a terminal object in set (namely, any arbitrary singleton).
To see the natural transformation α : 1Set → −× 1, consider:

a

b

a

b

a× 1

b× 1

f f

αa

f × 1

αb

Now, functors which preserve finite limits are left exact and dually, functors which preserve finite
colimits are right exact.

Example. We can construct a large class of functors as follows. Given a category A and any object a : A, a
representable functor is a hom-functor: Hom(a,−) : A→ Set which maps objects b : A to the hom-set
HomA(a, b). We say that F : A → Set is representable if there exists an object u : A such that there is a
natural isomorphism α : HomA(u,−) ∼= F . Somewhat similarly, a presheaf F is representable if there exists
an object u : A such that there is a natural transformation α : F ∼= HomA(−, u).14

Example. Given a category A, one very important category is the category of pre-sheaves, denoted SetA
op

or more conveniently, PSh(A). The objects are simply the contravariant functors F : A → Set, and the
morphisms are the natural transformations between α : F → G. Revisiting the earlier example of reflective
graphs, we can define directed graphs with presheaves as follows:

Define category A as having two objects V,E and as the non-identity morphisms, the pair of maps
s, t : V → E. For a pre-sheaf G, we identify G(V ) as the set of vertices, G(E) as the set of edges, and
G(s), G(t) : G(E) → G(V ) as the source and target maps respectively. In effect, if we abuse our notation
a little, given a, b : G(V ), we can define an element e : G(E) as the pair {a, b} such that e :≡ {a, b}, with
G(s)({a, b}) = a and G(t)({a, b}) = b.

We can recover a directed category of reflexive graphs by considering the presheaves G such that for
each a : G(V ), there is an edge ea : G(E) such that G(s)(ea) = G(t)(ea). This is intuitively pleasing, as it
suggests that a self-directed edge at a point a is merely a path between the source and the target functions
on the point. Moreover, when working with reflexive graphs, there is no harm (and indeed, it is quite useful),
to note that for each pre-sheaf G there is a mapping eG : G(V ) → G(E) which maps each vertex to the
associated self-directed edge, such that G(s)◦eG = G(t)◦eG = 1G(V ). In fact, this is precisely the property15

we shall use to identify RGph as a subcategory of PSh(A), where A is as above. It is also interesting enough
to remark upon the fact that this entails that graph homomorphisms are simply natural transformations on
this underlying category A.

Furthermore, we’ll abandon the notation of source and target maps as the image of presheaf on the
morphisms of A, and just denote s, t, as the meaning of this is clear.

1.2. Adjoints: Functors, Monads, and Modalities

Definition. We say two functors F,G are adjoint if for all a : A, b : B, HomA(a,G(b)) ∼= HomB(F (a), b).
We denote this by F a G. Adjoints arise when there are natural transformations η : 1A → G ◦ F and
ε : F ◦G→ 1B called the unit and co-unit respectively which satisfy the zig-zig identities:16

(ε �l F ) ? (F �r η) = 1F and (G �r ε) ? (η �l G) = 1G

Example. Let A be a category and S be a full subcategory of A. If under the inclusion functor ι : S →
A, ι has a left adjoint, ρ : A → S, then S is reflective subcategory. Dually, if ι a Ξ, then S is a

14Indeed, this is precisely the preoccupation of the Yoneda embedding, which is a functor Y : C → PSh(C), where PSh(C) is

the category of presheaves of C. We will elaborate on this further, but it is worth noting that morphisms of this category are

simply natural transformations.
15That is, when mapping from the category of reflexive graphs to PSh(A), we have a full and faithful mapping to the collection

of presheaves G for which there is a set function eG : G(V )→ G(E) such that G(s) ◦ eG = G(t) ◦ eG = 1G(V )
16It should be noted that this is simply a path between the identity 2-morphism and the composition of left and right whiskerings.
Sadly, this is not written in the incredibly intuitive left to right manner, but in the fashion of right to left so as to mirror

composition.
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coreflective subcategory. Please notice that nothing precludes a subcategory from being both reflective
and coreflective!17

Adjoints have some pretty nifty properties. Let F a G. Then F preserves all colimits of A and G
preserves all limits of D. If F is a left exact functor, then right adjoint G preserves all finite limits and
colimits. Hence F is exact.

Example. Univalence implies that the type Prop :≡
∑
X:U

isProp(X) classifies monomorphisms. With propo-

sitional resizing, we can find a small version of Prop.

Definition. Let A,B be categories which have finite limits, are cartesian closed and have a subobject
classifier, and let f : A→ B. We say f is a geometric morphism if there is a pair of functors (f∗, f∗) of

the form A
f∗

�
f∗

B such that f∗ is left exact and f∗ a f∗.

Example. Consider the unit type 1 and an arbitrary category A. Clearly, G : A→ 1 is a unique functor. If
F a G, then for any a : A, we find HomA(F (?), a) ∼= Hom1(?,G(a)), since only one map exists from ?→ G(a)

Example. Adjoints need not come in pairs. Recalling from our earlier examples, the forgetful functor
U : Top → Set, and functors F,G : Set → Top, which respectively takes a set to its discrete and indiscrete
topology. We find that F a U a G, which is an example of an adjoint triple. Because F,G,U do not ’resize’
the respective hom-sets, it is a rather straightforward exercise to confirm that these are indeed adjoints!

Definition. A monad in a category A is a triple given by

(1) an endofunctor T ;
(2) a natural transformation η : 1A → T called the unit of T;
(3) a natural transformation µ : T ◦ T → T called the multiplication.

Moreover, these natural transformations satisfy:18

T

T

T 2 T

T 3 T 2

T 2 T

η �r T

µ

T �l η

µ �r T

T �l µ µ

µ

Definition. A comonad on a category A is a monad on its dual category Aop. In particular, there is a
natural transformation ε : T → 1A, called the co-unit of T and a natural transformation ∆ : T → T ◦ T
called the co-multiplication, which satisfy the appropriate commuting diagrams.19

Definition. An adjoint cylinder is an adjoint triple F a G a H such that the adjoint pair on of the two
sides consists of identity functors and the other side consists of an idempotent monad or comonad.

Every adjoint triple induces an adjoint pair of endofunctors that underlie a monad induced by adjunc-
tion.20 Specifically, we can see G ◦ F a G ◦ H where G ◦ F underlies a monad induced by the adjunction
F a G and G ◦H underlies a comonad induced by the adjunction G a H.

Definition. A monad (a, T, η, µ) is adjoint to a comonad (a,G, ε,∆) if T a G and ∆, ε are the adjoints to
µ and η respectively.

Modality is a fairly abstruse philosophical concept. Part of the difficulty with reading philosophers
who are seriously preoccupied with metaphysics (such as Hegel or Heidegger) is that absent some formalized
language, it is hard to get a sense that a concept like a mode of being described by their informal ontologies

17In fact, as we shall soon see, there are certainly many intriguing sub categories where ρ a ι a Ξ.
18Reader, be forewarned, Tn for n ∈ Z+ does not mean the product of T , but rather the the standard functional power, i.e
T 2 ≡ T ◦ T , T 3 = T ◦ T ◦ T , and so forth.
19The reader at this point should be able to figure out what these diagrams are by identifying the appropriate diagrams,

reversing the arrows and properly relabeling them.
20Hopefully, the factorization system is starting to become apparent.
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is anything more than meaningless theological warbling about soul-stuff that the writer is certain, absolutely
certain, takes priority over formal epistemology.21 Absent Lawvere’s profoundly insightful identification of
an adjoint structure to describe the unity of being and nothing, reading Hegel’s description22 pretty much
leaves one with the impression that natural language is probably the worst medium in which one can reason,
and moreover, that there is not even a kernel of a good idea lurking in his exposition.23 However, courtesy
of Mike Shulman, we can think of modalities as a higher inductive type, as elaborated in [19], although this
is not necessary when first encountering cohesion.

Roughly speaking, a modality is a function M : U → Prop that tells us for every type A whether A has a
given property M . If M is a modality, then for every type A, there is anther type©(A) such that M(©(A))
holds. In many cases, particularly the several concerning cohesion that this paper examines, modalities
are identified with monads or comonads on either a subuniverse of propositions, or on the underlying type
universe. In particular, these would be idempotent monads, which in turn means endofunctors. This intuition
checks out.

Example. isSet: U → Prop is a modality for which the © is given by the set truncation ‖A‖0. Once
we have truncated to ‖A‖0, further truncation does nothing but preserve our set truncation. Similarly
isProp may be thought of as a modality; indeed, in homotopy type theory, the most frequently encountered
modalities are the n−truncations, for n ∈ Z≥−2.

Moreover, we can think of modalities as stable factorization systems. That is

Definition. Let A be a precategory. Let (E,M) form two classes of morphisms. If (E,M) form two classes
in A such that
(1) for every f : HomA(a, b) factors into f = r ◦ l, with l : E and r : M such that these factorizations are

unique up to isomorphism;
(2) E,M contain all isomorphisms;
(3) and are closed under composition;
(4) any l : E and r : M , where l : a → b and r : c → d, and (u, v) are morphisms u : a → c and v : b → d

such that r ◦ u = v ◦ l, there is a morphism γ : b→ c satisfying the lifting problem:

a

b

c

d

u

l

v

r
∃γ

If the lift γ is unique, then we say f is orthogonal to g, which we denote by f⊥g, and (E,M) forms an
orthogonal factorization system, as for any f : E, f⊥g for any g : M . Furthermore, if (E,M) is stable
under pullbacks,24 then (E,M) forms a stable factorization system.

In a sense, the modality arises by factoring the underlying endofunctor.

21This is mostly directed at Heidegger.
22To quote Hegel’s Science of Logic [7],

”Pure Being and pure nothing are, therefore, the same. What is the truth is neither being nor nothing, but that being – does

not pass over but has passed over – into nothing, and nothing into being. But it is equally true that they are not undistinguished
from each other, that, on the contrary, they are not the same, that they are absolutely distinct, and yet that they are unseparated

and inseparable and the each immediately vanishes in its opposite. Their truth, is therefore, this movement of the immediate
vanishing of the one into the other: becoming, a movement in which both are distinguished, but by a difference which has equally

immediately resolved itself.” What will shortly be shown is that this can be made to comport with the notion of cohesion,

which is a composition of modalities. What cannot be shown is that this is what Hegel actually had in mind.
23For further evidence of this, just try reading through Hegel’s writings on the spurious infinite without thanking Cantor for

so elegantly proving ℵ0 < c.
24A category A is said to have pullbacks if for any pair of morphisms, f : a → c and g : b → c, there exists an object p : A

and a pair of morphisms p1 : p → a, p2 : p → a such that f ◦ p1 = g ◦ p2 and with the property such that for any other triple
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Example. In a topos, the class E consists of epimorphisms, while M consists of the monomorphisms25 .
Moreover this is stable under pullback (simply consider that the UMP of epimorphism).

Specifically, in the category Set, we recognize these as the class of surjections and injections respectively,
and in the category Grp as surjective and injective homomorphisms. However, in CRing, the class E consists
of the localizations and M is the class of conservative26 homomorphisms.

1.3. Some Rudimentary Topos Theory Geometric morphisms are morphisms over a very special

kind of category called a topos. Fittingly, given the name of Johnstone’s tome on the subject27, provided
below are three equivalent definitions of an elementary topos.

Definition. A topos is a category E which
(1) has finite limits;28

(2) has an object Ω : E , called the subobject classifier, which is a pointed object classifying monomor-
phisms, along with a function P which assigns to each object a : E an object P (a) : E , where P (a) is
called the power object of a, which can be thought of as a generalization of the power set construction
in set theory;

(3) the functors SubE and HomE(b×−,Ω) such that for each object a : E , we have two natural isomorphisms
SubEa ∼= HomE(a,Ω) and HomE(b× a,Ω) ∼= HomE(a, Pb).

Definition. Alternatively, we can define a topos as being a category A which:
(1) has finite limits;

(q, q1, q2)

q

p

a

b

c

q1

q2

p1

p2

f

g

!

commutes. This is the universal mapping property of pullbacks. Dually, we can define pushouts. The interested reader is

invited to test these definitions out with what they know about products and coproducts.
25In case the reader is unfamiliar with these terms, in a category A, a morphism f : a → b is said to be epic when∏
c:A

∏
g,h:HomA(c,a)

((g ◦ f) = (h ◦ f)) → (g = h); if you’re not comfortable with framing of propositions as types, if for all

g, h, g ◦ f = h ◦ f implies g = h, then f is an epimorphism. A monomorphism is an epimorphism in the dual category, and

so it is left to the curious reader to come up with either a type-theoretic, or conventional description of the universal property
of monomorphisms.
26As a reminder, we say a ring homomorphism ϕ : A → B inverts an element f : A if ϕ(f) is invertible in B and we say ϕ is
conservative if every element of f : A which is inverted by ϕ is invertible in A. For any S ⊆ A, there is a commutative ring

S−1A with ring homomorphisms λ : A → S−1A which universally invert every element of S. This means that for any ring

homomorphism ϕ which inverts every element of S, there exists a unique ψ : S−1A→ B such that ψ ◦ λ = ϕ.
27Sketches of an Elephant,[10]
28In effect, this entails that A has equalizers and co-equalizers, along with finite products and coproducts. This necessitates
the following definitions for the uninitiated:

Definition. A category A is said to have an equalizer for a, b : A, and a pair of parallel morphisms a
f
⇒
g
b, if it has an object

e : A and a morphism eq : e→ a which are a limit to the parallel pair of morphisms, i.e.

e a b

c

eq
f

g
h!

commutes. Moreover, one can show that all equalizers are monic. One can also describe the equalizer as the dependent sum
over the dependent equality type e '

∑
a:A

(f(a) = g(a)), as described in[3]. One can dually define co-equalizers.

Definition. A category A has finite products if for every finite index category I with objects Xi in A ,
∏
iXi is an object

in the category. Dually, a category A has finite co-products if for every finite index category I, with objects Xi in A,
∐
iXi

is an object in this category.
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(2) is cartesian closed;29

(3) has a subobject classifier Ω, which is an object Ω and an arrow true : 1→ Ω such that for each monic
f : a→ b, there is one and only one χf : d→ Ω such that

a d

Ω1

f

χf!

true

is a pullback square.

Definition. An elementary topos is a category E such that
(1) E has a terminal object and pullbacks;
(2) E has an initial object and pushouts;
(3) E has exponentiation;
(4) E has a subobject classifier.

The interested reader can verify these are equivalent30 definitions. Throughout this paper, this third
definition will be the one considered.

Example. The canonical example of a topos is the category of sets, where the sub-object classifier consists
of the characteristic functions and Ω = {0, 1} such that

a d

Ω1

f

χf!

true

commutes.
We also recognize that false : 1→ Ω is defined by false(∗) = 0. Now, since false : 1→ Ω is a unique

arrow, we can recognize this as the characteristic function defining a subobject classifier for some monic
arrow. In this case, the characteristic function is of the unique map from ∅ → 1, giving us the following
pullback square:

∅ 1

Ω1

!

false!

true

which, in turn, can be used to describe the false maps for any topos. Thus we can say false = χ10 , where
10 indicates the unique map from the initial object to the terminal object.

Furthermore, working within the topos of sets, we can recognize that f : a� d are the inclusion maps
a ↪→ d, as these are simply abstract sets. Moreover, in the topos Set, the power object P (a) or rather Ωa is
just the powerset relation 2a we all know and love, as we can identify P(a) ∼= 2a when working with sets.31

29A cartesian closed category is a category A with a terminal object 1 : A, finite products (i.e, for all a, b : A, a × b : A), and
for any two objects a, b : A, there is an exponential object ba and a morphism eval : (a × ba) → b such that for any object c

and a morphism f : (c× a)→ b, there is a unique morphism f̂ : c→ ba such that

ba

c c× a

ba × a b

f̂ ff̂ × 1a

eval

The exponential construction is universal construction. If intuition is lacking about what ba and eval really consist of, consider
that ba may be though of the generalized collection of morphisms g : a → b, and eval(g, a) = g(a). The reader is encouraged

to consult [9] to see how the exponential object is related to a power object.
30Curiously enough, the first two definition come from Moerdijk, the first from [15] and the second from [14]. The final definition

is courtesy of [9]
31If a, b : Set, and χa = χb, where χa and χb are the standard characteristic functions of sets a,b that identify whether a point in
a set c is included in a (b, resp), then we have a = b, as they agree on all points, namely χa(a) = χb(a) = χa(b) = χb(b) = {1}.
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In homotopy type theory, if a : Set and if for the type family P : a → U , for each x : a, P (x) is
regarded as a proposition, then we can refer to P as a membership predicate32 and identify subsets of b ⊆ a,
with the following useful dictionary between set predicates and dependent pair types:

Rather curiously,33 within the type theoretic construction, where b : Set, every x : b is indistinguishable
as sets in homotopy type theory are not the sets of ZFC, but rather, are the abstract sets we’re playing with
in the topos of sets. From this example we can see one thing about sets: the logic of Set is an account of
set membership. This structure is rather brutal, as it ignores certain subtleties which may be of interest.
Luckily, we have other topoi for that!

Remark. In category theory, if a category A has a terminal object 1, we can define the elements of other
objects a : A as the class of arrows 1 → a. In the case of a topos E , the class of arrows 1 → Ω are the
truth-values of E .

In fact, one can think of a topos as being a generalization of the category of sets, in so much as one can
do mathematics within different topoi. The following are some interesting species of topoi, as they relate to
cohesion, which bear mentioning, but will not be further developed in this paper.

1.3.1. Some Interesting Topoi For Studying Smooth Spaces

Example. Ringed topoi emerge rather naturally from the fact that a topos is a cartesian monoidal
category.34 In this case, given a topos E , one can define internally35 the notion of a (commutative) unital
ring. Specifically, these are pairs36 (E ,O) where O is a distinguished unital ring object internal to the topos
E .

Example. Lined topoi (E , R) are ringed topoi equipped with both the usual internal ring object O and a
choice of an internal commutative algebra object R over O, called the line object.

One interesting example of a lined topos are the sheaves37 of cartesian spaces, denoted Sh(CartSpsmooth)
whose lined object is the interval38 object 1

∐
1→ R. Despite the rather expansive expository nature of the

paper, verifying that Sh(CartSpSmooth) is a topos will probably further test the reader’s patience. Suffice to
say it is an instance of a Grothendieck topos,39 as CartSpSmooth can be made into a small site with a little
leg work.40

32Indeed, it is worth recalling that type families are fibrations, in so much as given a type A : U , then the type family P : A→ U
is a fibration with base space A and each P (x) is a fibre over x, with the dependent pair

∑
x:A

P (x) characterizing the total

space of the fibration. In the case of propositional membership, we have the familiar predicate logic of First Order Logic,

but within the internal logic of other decidedly less quotidian topoi, we often have a typed higher order logic with higher order

predicates. One could almost say that this motivates the hunt for a means of modeling homotopy type theory in any elementary
(∞, 1)-topos (although that would very reductive).
33Although curious, this is not shocking at all, and can be considered an instance of the Mengen/Kardinalen paradox that
motivated Lawvere to study cohesive sets in the first place!
34See Section III for a full comment on what a monoidal category is. In this case, the categorical product gives the monoidal

structure, and the terminal object acts as the unit.
35There are two important ways to generalize a category: internalization and enrichment. The gist of an internal category is

that within a category A with enough pullbacks, one can construct another category if there is an object V : A and an object
E : A, together with source and target morphisms s, t : E → V , an identity assigning morphism e : V → E and a composition
morphism c : E ×V E → E satisfying the usual category laws.
36Looks an awful like a ringed space, no?
37Sheaves are merely pre-sheafs with additional topological structure which tracks the local data of an open set. The two
additional requirements are the locality and gluing requirements: (locality) given an open covering (Ui) of an open set U , and

s, t : F (U) such that s|Ui
= t|Ui

for each i, then s = t; (gluing) If for each pair Ui, Uj in the open cover, there two respective

sections si, sj which agree on overlaps (i.e si|Ui∩Uj
∩ sj |Ui∩Uj

, there is a third section s ∈ F (U) such that s|Ui = si for each i).
38In categories with finite limits, such as topoi, a lined object is the copairing of maps f, g : 1→ I, where 1 is a terminal object.
This is to say, [f, g] : 1

∐
1→ I is an interval object. In general, it is good practice to associate the interval object to the unit

interval.
39These are topoi that are equivalent to the categories of sheaves on a small site.
40This is tantamount to proving that every paracompact smooth manifold admits a good open cover.

Set Theory HoTT
{x ∈ a | P (x)}

∑
x:A

P (x)
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Example. A smooth topos is a lined topos where each functor (−)SpecW : E → E defined by an R-Weil

algebra41 W has a right adjoint, known as the amazing right adjoint, and the canonical W → RSpec(W )

is an isomorphism. Effectively this means that each R−Weil algebra is infinitesimal and satisfies the Kock-
Lawvere axiom42.

1.3.2. Return of the Reflexive Graphs: The Triumph of the Topos

Claim 1. The category RGph is also a topos.

Proof. We proceed by proving the following claims:

Claim 2. RGph has initial and terminal objects.

Proof. It is easy to verify that the empty graph is an initial object, as the empty set is an initial object in
the category of sets. Given the dependence of f2 on f1 in the pair of morphisms (f1, f2) which identify a
graph morphism, it is clear that a map from the empty graph to any graph G(V ), G(E) is unique both by
the uniqueness of f1(∅) = G(V ), and by the uniqueness of f2 up to isomorphism which identifies all edges
with their respective pairs {a, b} in G(E). If there were two such maps f2, g2, which identified the edges
G(E), it is immediately clear that the two are isomorphic, as f1 = g1 is immediate.

Similarly, since singletons are terminal objects in the category of sets, the graph consisting of one vertex
and its self directed edge is a terminal object in RGph. �

Claim 3. RGph has pullbacks and pushouts.

Proof. This claim is equivalent43 to proving RGph has finite products and equalizers, along with finite co-
products and co-equalizers.

So it suffices to show that RGph has finite products and coproducts, and then showing it has equalizers
and co-equalizers.

1.3.3. Products First, we can define the binary categorical product (which is not the same as the cartesian
product) of graphs as follows:
(G×H)(V ) = G(V )×H(V ) and the pair of pairs {{a, b}, {c, d}} is identified with an edge eGH : (G×H)(E)
if {a, c} is identified with an edge eG : G(E) and {b, d} with an edge eH : H(E). In particular if s(eG) =
a, t(eG) = c, s(eH) = b and t(eH) = d, then s(eGH) = {a, b}, which we’ll denote by esGH , and t(e) = {c, d}
which we’ll denote by etGH .

Importantly, when looking at the well known cartesian products for sets, the projection maps act on
the product of the vertex sets as expected; we can use the standard projection maps. What we need to to
is define the product maps on the edge product.

We define the product maps π1 and π2 on edges e, where e = {es, et}, by π1(e) :≡ {s(es), s(et)}
and π2(e) :≡ {t(es), t(et)}, which are equal to e1 and e2 respectively. In effect, we have ”lost” our edge
information, although we still have a ”point”!44

We can check that this indeed satisfies the limit notion of a categorical product, i.e. given H with
graph homomorphisms f : H → F and g : H → G, there is a unique map h : H → F ×G such that

H

F GF ×G

f g

π1 π2

h

commutes.
To see that there exists such a map, define f × g : H → F ×G as the following pair of products maps

(f1 × g1, f2 × g2):

41An R-Weil algebra is an R-algebra of the form W = R⊕ J , where J is an R-finite dimensional nilpotent ideal.
42Very briefly, this is the requirement that this topos requires every morphism from an infinitesimal interval D ⊂ R into R is
linear and can be extended uniquely to a linear map R→ R.
43Technically, the result is category A has products and equalizers if and only if A has pullbacks and terminal objects; one can
dually obtain the other result.
44Which in fact is an edge, and so for the sake of completing this half formed pun, we’re still edgy!
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• f1×g1 is simply the product map of the product of the sets of vertices, i.e. f1×g1 : H(V )→ F (V )×G(V ),
where in standard set notation

(f1 × g1)(H(V )) := {(f1(x), g1(x)) ∈ F (V )×G(V ) | x ∈ H(V )}

• f2 × g2 requires a little more delicacy.
Since both f, g are graph homomorphisms, we have f2, g2 are maps from H(E) to F (E) and G(E)
respectively. In particular, let eH : H(E), and denote f(eH) = eF and g(eH) = eG. Now define

(f2 × g2)(eH) :≡ {{s(f2(eH)), s(g2(eH))}, {t(f2(eH)), t(g2(eH))}} ≡ eFG
for some eFG : (F ×G)(E). Very quickly, with this definition see that:

π1((f2 × g2)(eH)) = π1(eFG)

= {s(esFG), s(etFG)}
= {s({s(f2(eH)), s(g2(eH))}), s({t(f2(eH)), t(g2(eH))})}
= {s(f2(eH)), t(f2(eH))}
= f2(eH)

= eF

A similar result follows for π2.
To quickly check that this construction is unique, suppose that there is some h : H → F × G, such
that π1 ◦ h = f and π2 ◦ h = g as above. Immediately, we find that h1 = f1 × g1, given the universal
properties of products over sets. Similarly, for any edge eH : H(E), we find that π1(h2(eH)) = f2(eH) =
{s(f2(eH)), t(f2(eH))} and π2(h2(eH)) = g2(eH) = {s(g2(eH)), t(g2(eH))}, but as this defines an edge
in F ×G, we find that for each eH : H(E), h2(eH) = (f2 × g2)(eH), whence h2 = f2 × g2.

Hence binary products exists. Using this construction, one can then make graphs (F ×G)×H and so forth,
and moreover, verify that (F ×G)×H ∼= F × (G×H), rather straightforwardly using the universal mapping
property of products.

1.3.4. Coproducts Similarly, G
∐
H is a graph defined as follows:

G(V )
∐
H(V ) is the standard coproduct of sets, and {a, b} is identified with an edge in (G

∐
H)(E) if {a, b}

is identified with an edge in G(E) or in H(E). The reader is invited to check that this definition is indeed
a categorical coproduct.

1.3.5. Equalizers and Co-equalizers Now to check that we have equalizers and co-equalizers.
Suppose that we have graph morphisms f, g : G → H. An equalizer eq is simply the inclusion map

i : E ↪→ G where E ⊂ G is the induced subgraph on the set of vertices such that E(V ) = {a : G(V ) | f(a) =
g(a)}. Similarly, the co-equalizer is a projection map p : H → C where C is the graph of the coset of vertices
H(V )/ ∼ where ∼ is an equivalence relation on H(V ) given by f(a) = g(a) for some a : G(V ). Edges in
C are given by the induced pairing of equivalence classes {[b], [b′]} when {b, b′} has a corresponding edge in
H(E). �

Claim 4. RGph has exponential objects.

Proof. Given graphs G,H, the exponential graph HG is a graph whose set of vertices are the vertex mor-
phisms of the graph homomorphism f : G→ H, i.e. HG(V ) = {f1 : G(V )→ H(V )}, with edges {f1, g1} in
HG(E) identified as follows: for each pair {a, b} with an edge in G(E), {f1(a), g1(b)} is identified with an
edge in HG(E).

Moreover, there for graphs F,G,H, there is a natural isomorphism α : Hom(G × F,H) ∼= Hom(F,HG)
given by (α(f)(b))(a) = f(b, a) for all f : Hom(G × F,H), a : F (V ), b : G(V ). We can verify this be letting
f : F ×G→ H be an inhabitant of the appropriate hom set, and supposing that {a, a′} is an edge in F (E)
and {b, b′} is an edge in G(E). We then find α(f)(a)(b) = f(a, b) and α(f)(a′)(b′) = f(a′, b′), which gives us
an edge in H, since f is a graph homomorphism.

We check naturality rather easily by supposing that f : F → F ′ and g : H → H ′ are graph homo-
morphisms, and letting ϕ : Hom(F ′ ×G,H). Then we have (α(1G × f, g))(ϕ)(a)(b) = (1G × f, g)(ϕ)(a, b) =
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g(ϕ(b, f(a))) and ((f, gG)(α))(ϕ)(a)(b) = g(α(ϕ))(f(a)(b)) = g(ϕ(f(a), b)). One can easily check this gives
rise to the following commuting diagram:

Hom(G× F,H) Hom(F,HG)

Hom(F ′, (H ′)G)Hom(G× F ′, H ′)

α

(1G × f, g)

α

(f, gG)

Since the diagram commutes, we find that α is a natural isomorphism, from which Hom(G × F,H) ∼=
Hom(F,HG), and thus we find that RGph indeed have exponentials. �

Claim 5. RGph has a subobject classifier.

Proof. Before beginning, it suffices to note that for any monic graph homomorphism m : H � G, we can
identify H up to isomorphism with a subgraph S ↪→ G, moreover, since we’re working with abstract graphs
and for the sake of less cluttered notation, we will consider all sources of monic maps as subgraphs.

Immediately, we recognize that our subobject classifier will need to be a graph Ω. Thus Ω(V ), as a set,
has the set subobject classifier {0, 1}. Thinking back to the presheaf category of reflexive graphs, we can
denote Ω(V ) = {0V , 1V }. In the case where a : G(V ) but a is not in S(V ), χm(a) = 0V , while if a : G(V )
and a : S(V ), then χm(a) = 1V .

However, the internal logic for the category of reflexive graphs is decidedly not Boolean. One only
needs to consider the possibilities regarding edges to see why this is the case, so allowing some abuse of
notation
(1) Suppose {a, b} : S(E), then we can assign χm({a, b}) = 1E ;
(2) Suppose {a, b} : G(E), but not in S(E), we have the following four distinct possibilities:

(i) Further suppose χm(a) = 0V and χm(b) = 0V , then in this case, we assign χm({a, b}) := 0E ;
(ii) Further suppose χm(a) = 1V , and χm(b) = 0V , then in this case, we assign χm({a, b}) := s,

indicating the source is ’valid’45

(iii) Further suppose χm(a) = 0V , and χm(b) = 1V , then in this case, we assign χm({a, b}) := t,
indicating the target is ’valid’;

(iv) Further suppose χm(a) = 1V and χm(b) = 1V , then in this case, we assign χm({a, b}) := (s, t),
indicating that both the source and target are valid, but the edge itself is not present in the graph.

In effect, we can identify Ω with Ω(E) = {0E , s, t, (s, t), 1E}, which is partially ordered by 0E < s, t < (s, t) <
1E . �

With these claims, we can verify that RGph is indeed a topos. We’ll soon see that is also happens to be
a cohesive topos. �

Remark. It is also a rather interesting, if not altogether trivial observation, to notice that each self directed
edge is identified with 1E , in effect, identifying each vertex as a ”true” object. Moreover, the truth values
corresponding to the self-directed edges are invariant across all reflexive graphs. Somewhat similarly, in a
complete graph, every edge is evaluated as 1E , and so every possible relation between vertices is ”true”. Of
course, things that are tautologically true are not necessarily those things which we find interesting!

Definition. A local geometric morphism is an adjoint triple F ∗ a F∗ a F ! : B → A such that for all
a, b : B, F ∗ is such that

45It bears commenting that one of the most powerful features of topos theory is that one can work with the internal logic of

that category, most notably by treating sub objects as (higher order) predicates, and forming a poset of the truth values that
can be made into a Heyting algebra. In this case, this non-boolean internal logic conveys more information about structure than
would otherwise be permitted if we worked strictly in Set and with the standard ∈ predicate. In this case, the ’validity’ really

only refers to a commuting diagram and the respective truth value which can be identified rather loosely with the proposition
of ”is an edge whose source is a vertex in the graph, but whose target is not”. Rather than simply collapsing this information

as true or false, we have five truth values which can form a Heyting algebra. For the reader curious about the internal logic of a

topos, start with [9] and [15]. Truly adventurous readers can further develop the Propositions as Type Perspective, developed in
[1][p 55], and draw out the corresponding dictionary between the familiar logical operators and those that emerge in categorical

semantics (which would have been provided but for the sake of keeping this paper compact!)
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(1) (full) F ∗ : HomB(a, b) � HomA(F ∗(a), F ∗(b))
(2) (faithful) F ∗ : HomB(a, b) � HomA(F ∗(a), F ∗(b)).

Definition. A local topos E is a sheaf topos where the global section geometric morphism E
Lconst←−→

Γ
Set has

a further right adjoint coDisc : Set ↪→ E , i.e. Lconst a Γ a coDisc.

Remark. Considering that types are weak ∞−groupoids, we can think of an (∞, 1)−topos H as a type with
a canonical (∞, 1) geometric morphism to the type of ∞-groupoids. Objects are generalized spaces and the
higher homotopies might carry additional structure to the standard example. Indeed, being able to realize
homotopy type theory with higher inductive types and the univalence axiom in the internal logic of arbitrary
elementary (∞, 1)−topoi is an active area of research (see [17] for a nice in).

2. What Is Cohesion, Anyhow?

Very broadly, cohesion is a means of describing how non-trivial structures on mathematical objects
arise functorially in a way that relates individual objects to the underlying conceptual whole. An example
which is consistently returned to throughout this paper is the relationship between topologies and their
underlying sets.

An abstract set X has no structure, although every element might be distinct, they are indistinguishable
without additional structure, and with that further predicates. For example, when considering the structure
of a topology, we can run the gamut from indiscrete topologies to discrete topologies, with an endofunctor
mapping the indiscrete topology to the discrete topology in effect giving an underlying abstract set X an
incredible amount of structure (by making every point distinguishable).

The difficulty remains that if you stick to the theoretical motivations, you beg the question what is the
use of this formalism. If you stick to applications, you are liable to miss the actual point of the formalism.
Any serious pedagogical discussion of calculus for instance is situated on a knife’s edge separating exposition
of analysis and differential geometry from imparting formulae for manipulating functions to solve well-posed
problems. This is the tension between teaching how to identify and create models with how to work within
a model, akin to a dilemma in the pedagogy of the culinary arts between teaching how to create recipes and
how to follow them – between composition and technique.

Rather than overload a set with additional predicates, we can deal with discrete possessing the (geo-
metric) structures we’re interested in for free by working in a system where the objects already possess
this structure. For instance, synthetic differential geometry avoids the complexity of classical definitions
by treating the objects as already being smooth, and from there, proceeding to work within the internal
logic of a smooth topos. This example is somewhat evocative, because in such topoi, given the existence of
exponentials, we can generalize the notion of a tangent bundle as the exponential object XD, where D is an
infinitesimal interval and X is simply a smooth object of the topos.

However, cohesion extends far beyond smooth geometry. Lawvere, in seeking a proper science for expli-
cating the formal language of dynamics may have preoccupied himself with problems in continuum physics
and combinatorics in his development of cohesion, still went about this in a way where such developments
are incidental to the underlying theory. Still, working with cohesive categories allows one to develop a fun-
damental physics, which Schreiber and Shulman have made overtures to in [17] with regards to quantum
gauge field theory, situated in the language of cohesive homotopy type theory.

One can think of an (∞, 1)−topos H, whose objects are ∞−groupoids (which you are encouraged to
think of as Types), as a collection of spaces (again, think Types), and that cohesion on H is a means of
specifying how points are collected together in a logical structure. For instance, open balls in topological
spaces or smooth structures are examples of cohesive structures.

Any type admits both discrete cohesion where no distinct points cohere non-trivially, and a codiscrete
cohesion, where all points cohere in every possible way admitted by the cohesive structure. In the case of
elementary topoi, we are looking at adjoint functors into the category of sets, while with (∞, 1)-topoi, we
look at at adjoint functors into the category of ∞−groupoids. For instance, Γ : H → ∞Gpd is a functor
which forgets the cohesive structure (which we can identify with the representable functor HomH(∗,−), where
∗ is a terminal object), but identifies the underlying object which possessed the structure.

Cohesion is captured by an adjoint triple of modalities which describe the transition within one Type
from one mode of being to another; in a sense, it is simply an algebraic way of changing the point of view
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one takes on a formal object. This adjoint triple of modalities is given as follows:

modality a comodality a modality ≡
∫
a [ a ]

2.1. Cohesive (Higher) Topos Theory For a local ((∞, 1)−)topos H equipped with a fully faithful
extra right adjoint coDisc to the global section geometric morphism Disc a Γ, we define the following
idempotent monads:

Definition. ] :≡ coDisc ◦ Γ, where the codiscrete objects are the modal types. For example, in Top, the
full subcategory of indiscrete topologies consists of the codiscrete objects for this modal type.

Definition. [ :≡ Disc◦Γ, where the discrete objects are the modal types. A discrete objects can be thought
of as a free object for the forgetful functor (i.e., it is an object which is in the image of its left adjoint, like
a discrete topological space). For instance, the full subcategory of discrete topologies in Top contains the
discrete objects of this modal type.

Definition. The ”shape” modality
∫

builds out of an additional left adjoint Π, which preserves finite
products, and depending on the context one is working in, Π computes the connected components or the
fundamental ∞−groupoid. So

∫
:≡ Disc ◦Π.

This shape modality gives us a ”points-to-pieces” transformation which takes points to their geometric
realization, in the sense that the connected components are ”discretized”.

So we identify the adjoint 4-tuple of functors with the adjoint triple of modalities:

Π a Disc a Γ a coDisc ≡
∫
a [ a ]

Example. A cohesive set is an adjoint triple of these modalities
∫
a [ a ].

Putting all of these pieces together, we now have a clear picture of a cohesive topos.

Definition. A cohesive topos is a strongly connected, connected, locally connected, local topos E , such that
the global section geometric morphism E → Set gives rise to the adjoint 4-tuple

Π a Disc a Γ a coDisc : Set→ E
which can also be identified with the adjoint triple of modalities∫

a [ a ]

and where the objects a : E are spaces endowed with some structure of interest, i.e. cohesion, Γ(a) is the
underlying set, coDisc equips sets with the codiscrete cohesion, Disc equips sets with the discrete cohesion,
and Π(a) is the set of connected components of object a.

In the higher case, instead of a global section geometric morphism to Set, Γ : H→∞−Gpd. However,
we do not need to work exclusively with topoi.

2.2. Axiomatic Cohesion Lawvere’s motivation for developing cohesive topos theory appears to have
developed organically from his interest in developing continuum physics from the perspective of categorial
logic, and his desire to see a means of corralling various background models for dynamical mathematical
theories46 in a sufficiently expressive framework which unifies different mathematical categories by their
mutual transformation.

Going beyond topoi, Lawvere identifies that the default categories for a ”science of cohesion” are ex-
tensive categories.47 From here, he develops the evocative notion of categories that are quality types over
other categories, from which one recovers the adjoint quadruple with which the reader is now no doubt
familiar, where extensive and intensive qualities on a category of cohesion are characterized by Π and Γ
respectively. This language is philosophically evocative because Lawvere manages to also describe the noto-
riously contentious concepts form and substance in this manner, where form is an extensive quality, and
substance is an intensive quality. That these seemingly separate and opposed notions characterize cohesion

46Lawvere says as much in the opening of [11].
47These are, rather informally, (not necessarily closed) cartesian categories with finite coproducts that are preserved by pullbacks
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is precisely Lawvere’s point,48 as these notions are realized in each object as, in another the philosophically
loaded term, modalities.49

Of course, this exposition begs the question: how are these bold-faced terms defined?

Remark. Although up until now, functors have been capitalized, in keeping with the spirit of type theory,
Awodey’s approach to category theory, etc, when discussing Lawvere’s work, and the rather idiosyncratic
approach he takes therein, functors are now denoted by lower case letters. Moreover, these definitions are
almost directly from Lawvere [11], but are rewritten in a way that aims to be more accessible.

Definition. Let Q,B be two extensive categories. If functor q∗ : B → Q is full, faithful, and is both
reflective and co-reflective by a single functor q! = q∗, then Q is a quality type over B.

Definition. Suppose that E and B are cartesian-closed extensive categories equipped with the adjoint
quadruple

f! a f∗ a f∗ a f ! : B → E

with the following properties:
(1) f! preserves finite products;
(2) f ! is full and faithful;
(3) For all a : E and b : B, there is a natural isomorphism

f!(a
f∗(b)) = [f!(a)]b

i.e. f! preserves B parameterized exponentials;
(4) the canonical map f∗ → f! in B is an epimorphism (which he also evocatively refers to as the Nullstel-

lensatz).
Then E is a cohesive category relative to B.

We may very well recognize that this describes the familiar adjoint quadruple Π a Disc a Γ a coDisc.
In effect, f∗ and f! express the opposition between ”points” on one hand, and ”pieces” on the other, while
f ! and f∗ describe the opposition of pure cohesion (codiscreteness) and pure anti-cohesion (discreteness).
Lawvere [11] goes on to point out that these are identical in B, while uniquely placed as full subcategories
in E by f∗. Furthermore, the astute reader will notice that this means that a cohesive category is at least a
local topos.

Remark. Returning back to topos theory, now with this relative point of view, we can now define a cohesive
topos as a topos E relative to a base topos D, if given a geometric morphism50 f : E → D such that
(1) There is an additional left adjoint f! a f∗ that preserves finite products and terminal objects in which

case E is, in order, a locally connected, connected, and strongly connected topos;
(2) E is a local topos, with an additional right adjoint f∗ a f !;

In fact, it is somewhat instructive to consider that a Grothendieck topos E is locally connected if for each
a : E , a is a coproduct of connected objects ai : E indexed by I : U .

Interestingly enough, given a cohesive category E relative to an extensive base category B, qualities
are defined not as a category, but as functors that factor f! and f∗, the ”pieces” and ”points”, through
quality types.

Definition. Let E be a cohesive category relative to B with the adjoint 4-tuple f1 a f∗ a f∗ a f !. If
h : E → Q is a functor such that
(1) where Q is a quality type A over B with q∗ = q! : Q→ B;
(2) h preserves finite co-products;
(3) q! ◦ h = f! : E → B ≡ E → Q→ B

then H is an extensive quality on category E. If g∗ : E → B is a functor that
(1) preserves finite products and coproducts;

48The popular psychologized reading of Hegel and what was meant by Geist may not have helped matters.
49Although he would no doubt disapprove, one can praise Lawvere’s entire project as the triumph of algebra over ontology, in
as much as what is meant by ontology is the branch of philosophy where one asserts by faith alone predicates which underlie

all logical discourse, and acceptance of those predicates is due to the authority of a Very Important Philosopher (and the
intellectual laziness of the adherent).
50Recall that this entails f∗ a f∗ : D → E, where f∗ is left-exact.
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(2) has a quality type L with q : L→ B and q∗ = q! : L→ B;
(3) q∗s∗ = f∗

then s∗ is an intensive quality on E.

Remark. First, for some grounding, think of what quality type through which we have been factoring Π.
This is key, as a quality type is a full embedding of the base category on the left and right (as the

adjoints are the same).51 Furthermore, Lawvere notes that an extensive quality of an object a : E has the
same number of connected pieces as a. Finally, he rather cryptically suggests that the canonical extensive
quality is form, but this can be taken literally to mean that form is simply a coproduct of connected
components. Moreover, extensive quality types are found in any cohesive category by a theorem of Hurewicz
(the statement and proof of which is given rather tersely in [11]).

In contrast to extensive quality, Lawvere rather helpfully notes that an intensive quality of an object
a : E has the same number of points as a, before going on to provide a proof that any cohesive category
has a canonical intensive quality. In the case of where one gets the canonical notion of substance, I
suppose the rather intuitive idea that substance encompasses every particular instance of some object should
suffice. Lawvere himself points out this distinction between ”in the large” and ”in the small” in traditional
philosophical analysis. Again, thinking back to our topological example, the canonical qualities have thus
far been discreteness and codiscreteness.

It is both remarkable and quotidian that he can precisely describe these concepts with category theory.
Remarkable because the history of philosophy is rife with noble attempts at providing a sound formal ontology
which allows one to reason about these concepts, and quotidian, because it really is not that surprising that
these were sound ideas merely waiting for the appropriate mathematical ontology; remember, Mac Lane was
well versed in the philosophical tradition of German Idealism.52

Yet, cohesion does not stop with topos theory.53 Indeed, one can consider (∞, 1)−categories with object
classifiers (these would be (∞, 1)−topoi, which [17] suggests are the correct objects to internalize homotopy
type theory, subject to some open questions regarding coherence issues), and Schreiber and Shulman [17],
proceed to provide the cohesion axioms in type theoretic manner via reflective subfibrations and ]− Types.
Sadly, properly analyzing Schreiber and Shulman’s work on cohesive homotopy type theory ([18], [17],
[19],and [20], to cite a few) is beyond the scope (and time constraints) of this paper.54 However, the authors
of [17] more than ably speaks for themselves. The intrigued reader should now be equipped to read this
paper, and many of the papers cited therein.

2.3. Some Motivating Examples

Example. The motivating example for this subject comes from Lawvere’s analysis of Cantor’s account of
Mengen and Kardinalen, where a Menge can be thought of as the underlying structure on an ensemble of
parts. Lawvere notes that Menge is often translated as set,55 while Kardinale should be thought of as an
abstract set.

The notion of quantity is an adjoint between discreteness and continuity given by [ a ]. These adjoint
modalities capture the seeming paradox presented by Cantor in which elements of a set are distinct yet
indistinguishable. In effect, this harkens back to the earlier example of F a U a G : Set → Top, where
U ≡ Γ is the forgetful functor, and F ≡ Disc and G ≡ coDisc.

Example. Similarly, one can capture the geometric notion of continuum geometry with the adjoint cylinder
from

∫
a [. This gives rise to the points to pieces transformation by composing the natural transformations

η ◦ ε, with η the unit of
∫

and ε the co-unit of [. This is illustrated in Figure 1.
In particular, as

∫
≡ Disc ◦ Π, and Π : Top → Set takes connected components to their underlying

sets, we can concretely see how
∫

goes from ”points” to ”pieces”.56 For instance, if this transformation is an

51Hint: I’ve given the answer elsewhere.
52Indeed, the label of categories was inspired by Kant, who himself was drawing from the rich philosophical tradition of
considering categories to be a maximally extensive class whose objects were affirmable predicates. Of course, if this description
is maddeningly abstruse, there is always Type theory and diagrams, which we can verify as sensible!
53Otherwise, there wouldn’t be this paper.
54As well as this author’s skill as an expositor.
55While also lamenting that in acting as gatekeeper of sorts to Cantor, Zermelo may have while helped add to our confusion

about this Mengen/Kardinalen paradox.
56Just ask yourself, ”What is the image of Disc(Π(X

∐
Y )) in Top?”, where X,Y are connected topological spaces.
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equivalence, ie [
'−→

∫
, then H is infinitesimally cohesive, in the sense that objects are built from precisely

one point in each cohesive piece.

2.4. Cohesion In Reflexive Graphs Recall from our earlier examples that RGph is a subcategory
of the pre-sheaf category PSh(A), where A is a category of two objects V,E and four maps, the two identities
and s, t : V → E. Moreover, RGph is a topos. Although a full verification of the adjoint triple of modalities
will not be provided,57 provided below is the adjoint quadruple:

Π a Disc a Γ a coDisc
which gives rise to cohesion in RGph, and a reasonably complete collection of proofs of subclaims to support
that these functors define RGph as a cohesive topos. Going from right to left, we define the functors acting
on objects as follows:

• coDisc : Set → RGph takes an underlying set a : Set to the presheaf Ga,c such that Ga,c(V ) = a
and G is a complete graph, i.e. for any two points x, y : a, there is are e1, e2 : Ga,c(E) such that
s(e1) = x = t(e2) and s(e2) = y = t(e1).
• Γ : RGph→ Set takes the presheaf G to G(V ), the underlying set;
• Disc : Set → RGph takes a set a : Set to the presheaf Ga,d such that Ga,d(V ) = a and Ga,d(E) is a

graph whose only edges are the self-directed edges of each vertex, i.e., a graph whose only edges are
loops at a vertex.
• Π : RGph → Set, takes a pre-sheaf G to the quotient set G(V )/ ∼ where a ∼ b if and only if a, b are

vertices of a latent connected undirected subgraph [g] ↪→ G. Informally, the latent undirected subgraphs
are all the edges whose source and target are ”forgotten”, and an undirected subgraph is connected, if
for each pair of vertices a, b in the subgraph, there is a path. For instance, Π takes the following graph
to:

A B C

D

EF

to the set {{A}, {B,C,D,E}, {F}}, while sending

A B C

D

EF

to {{A,F}, {B,C}, {D,E}}. In both cases, this is merely sending the weakly connected path components to
the set of their vertices. In particular, we recognize that for each pre-sheaf G, there are sub-sheafs, denoted
[g] ↪→ G, such that [g] describes a weakly connected subgraph, and for ū : G(V )/ ∼, u : [g] for one, and only
one [g], which we will denote by [g]u, so Π maps [g]u 7→ ū,

We claim (and rather informally prove),58 that these form an adjoint quadruple Π a Disc a Γ a coDisc
and that Π as defined preserves finite products and that Disc and coDisc are full and faithful.

Let a : Set and G : RGph, going right to left as before:
• It suffices to notice the following:

(1) If G is a reflexive graph and if H is any complete reflexive graph, than any function f : G(V )→
H(V ) induces a graph homomorphism as all edges of G(E) are ’preserved’ in a complete reflexive
category, either mapping to new edges or loops at a vertex;

57Furthermore, Lawvere has already done so with some very terse, and very high level category theory elsewhere, such as in

[11], in the case of undirected reflexive graphs.
58These sketches can be elaborated upon to properly establish the functoriality and adjointness of the pairs and the unit and

co-unit natural transformations satisfying the zig-zag identities.
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(2) We identify Γ(G) = G(V );
(3) For every a : Set, coDisc(a) = Ha,c andHa,c(a) = a, and so HomRGph(G, coDisc(a)) = HomRGph(G,Ha,c).

From here, it is a matter of applying (1) to the hom-sets HomSet(Γ(G), a) ∼= HomRGph(G,Ha,c).
• Similarly, it suffices to notice the following:

(1) If G is a reflexive graph and if H is any reflexive graph consisting solely of the loops on its vertices,
than any set-function f : H(V )→ G(V ) induces a graph homomorphism as all loops of H(E) are
’preserved’ by the mapping of the set of vertices;

(2) We identify Γ(G) = G(V );
(3) For every a : Set, Disc(a) = Ha,d andHa,d(a) = a, and so HomRGph(Disc(a), G) = HomRGph(Ha,d, G).

From here, it is a matter of applying (1) to the hom-sets HomSet(a,Γ(G)) ∼= HomRGph(Ha,d, G).
• Next, it suffices to notice the following:

(1) Disc(a)(V ) = a.
(2) Let f : G → H with f = (f1, f2), then Π(f) : G(V )/ ∼→ H(V )/ ∼ is defined by the mapping

f 7→ f̄1, where f̄1 is the induced mapping of f1 such that

G(V ) H(V )

G(V )/ ∼ H(V )/ ∼

f1

qG qH

f̄1

commutes, where qG, qH are the respective canonical quotient maps.
(3) Given any graph homomorphism f : G→ Disc(a), since graph homomorphisms preserve edges, if

u, v : G(V ) have an edge e : G(E), and f1(u) = x for some point x : a, then necessarily f1(v) = x
and f2(e) is the self directed edge at x. If f1(v) 6= x, then there is no possible edge for e to be
mapped to in the discrete graph, and thus f would not be a graph homomorphism. This is to say
that f2 is fully determined by the map f1, and hence the graph homomorphism f is determined
by the set homomorphism f1.

(4) Let a : Set. Given f = (f1, f2) : G→ Disc(a) is a graph homomorphism, we see that f1 uniquely
determines a set-function f∼1 : G(V )/ ∼→ a. Since f is a graph homomorphism, f2 must take all
edges of a weakly connected directed subgraph [g] ↪→ G to the same self-directed edge in Disc(a)
and all vertices of [g](V ) to the associated vertex of that edge. So, for ū : G(V )/ ∼, where u : [g]
for some unique [g] ↪→ G, we define f∼1 by

ū 7→ s(f2(q−1(ū)))

To see why this is unique, if f1, g1 are graph homomorphisms that determine the same h∼

function, then they must also agree on their mapping of each u : G(V ) to Disc(V )(a), which
means as set functions f1(u) = g1(u) for all u, and hence f1 = g1.

(5) Moreover, if we were given f∼1 : G(V )/ ∼→ a, we can uniquely induce a set function f1 : G(V )→
Disc(a)(V ) as follows: given that every vertex in u : G belongs to one and only one weakly
connected subgraph [g], denoted [g]u, and for any weakly connected subgraph [g] of G, there is by
definition a vertex x : a such that f∼1 (q([g])) = x, for all u : G(V ), define f1 by u 7→ f∼1 (q([g]u)).
Since Disc(V ) = a, we find this defines f1 : G(V )→ Disc(a)(V ).
Furthermore, by (2), this f∼1 determines the graph homomorphism f .

(6) This gives us for each a : Set and G : RGph, α : HomRGph(G, Disc(a)) → HomSet(Π(G), a) by
α(f) = α((f1, f2)) = f∼1 .

(7) If α(f) = α(g), then f∼1 = g∼1 . But this means that f1 and g1 map each individual weakly
connected components to the same vertex in a, from which we can see f1 = g1 as in each weakly
connected component in G every vertex is mapped to the same vertex in a. Hence α is injective.

(8) Similarly, for each ϕ : HomSet(Π(G), a), we find there is an f such that α(f) = f∼1 = ϕ. We do
this as follows: set f∼1 := ϕ([g]) for each weakly connected subgraph [g]. By (4), we see this
determines a graph homomorphism f .

By (7) and (8) α : HomRGph(G, Disc(a)) ∼= HomSet(Π(G), a).
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• Finally, it bears remarking that if u : [g] then we can identify ū with [g].
We have thus established that these do indeed define an adjoint quadruple

Π a Disc a Γ a coDisc

Now to see ”cohesion”, we must prove the following claims:

Claim 6. Disc is full and faithful.

Proof. To check that coDisc is full and faithful, it suffices to notice that

HomSet(a, b) ∼= HomRGph(Disc(a), Disc(b))

follows immediately from the following fact about maps between discrete graphs: any set morphism between
the sets of vertices of two discrete graphs extends to a graph homomorphism between discrete graphs. The
uniqueness of the graph homomorphisms follows immediately from the uniqueness of the set morphisms.

�

Claim 7. coDisc is full and faithful.

Proof. To check that coDisc is full and faithful, it suffices to notice that

HomSet(a, b) ∼= HomRGph(coDisc(a), coDisc(b))

follows immediately from the following fact59 about maps between complete graphs: any set morphism
between the sets of vertices of two complete graphs extends to a graph homomorphism. The uniqueness
of the graph homomorphisms follows immediately from the uniqueness of the set morphisms. Moreover,
because every vertex is connected and the graph is reflexive, any set function assignment can be permitted
without worrying about ”missing” and edge.

�

Claim 8. Π preserves finite products.

Proof. (Informal) As has now been shown, both Set and RGph as toposes, have finite products. We thus
wish to show that given a product in RGph, under Π(−) we have that

Π(H)

Π(F ) Π(G)Π(F ×G)

Π(f) Π(g)

Π(π1) Π(π2)

Π(h)

commutes.

59Mentioned, and slightly sketched earlier.
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First observe that in Set,

Π(H)

Π(F ) Π(G)

Π(F ×G)

Π(F )×Π(G)

Π(f) Π(g)

Π(π1) Π(π2)

Π(h)

!

π1 π2

From here, we wish to show that ! : Π(F )×Π(G)→ Π(F ×G). In fact, this is tantamount to showing
there is a unique map from (F (V )/ ∼ ×G(V )/ ∼)→ (F ×G)/ ∼.

To go about this, first the reader is encouraged to verify that the product of two weakly connected
subgraphs [f ], [g] in G and H respectively is a weakly connected subgraph in G×H, and moreover that every
weakly connected subgraph in G × H is determined by the product of two weakly connected subgraphs.60

Then, define ϕ : Π(F )×Π(G)→ Π(F ×G) by (ū, v̄) 7→ q(([f ]u × [g]v)(V )). Now, without loss of generality,
considering that Π(π1) : (F × G)(V )/ ∼→ F (V )/ ∼, we find that Π(π1)(ū, v̄) = ū. Similarly, we find that
Π(π2)(ū, v̄) = v̄. Moreover, as ϕ maps the product of equivalence classes to the quotient of the set of vertices
of the product of the respective connected subgraphs, it is reasonable to expect that this is the unique map
doing so. Indeed, the interested reader can confirm this.

�

Hopefully, the reader better understands how RGph is a cohesive topos. For a concrete illustration,
using an earlier reflexive graph, we can see ”cohesion” through the appropriate modalities as follows:

60Consider that an edge eFG is composed of eF and eG, and if [f × g] is a weakly connected subgraph of F ×G, then there is

a path between all vertices in the underlying undirected graph. If eF and eG are edges in weakly connected subgraphs, there

are corresponding e′F , e
′
G which form a path with eF and eG (these may simply be the self directed edge). Without loss of

generality, suppose t(eF ) = s(e′F ) and t(eG) = s(e′G) , then the product eF × eG = eFG = {{s(eF ), s(eG)}, {t(eF ), t(eG)}}
’connects’ with e′F × e

′
G = e′FG.
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A B C

D

EF

A B C

D

EF

A

B C

D

EF

A,F B,C

D,E

]

[
∫

Figure 1: In this case we take an earlier graph and show how it changes under the ], [, and
∫

modalities. One
can quite literally now see how [→

∫
is a matter of ”points” to pieces” under the composition of η ◦ ε where

η is the unit of
∫

and ε is the co-unit so that in this case we have the component composition εG → 1G → ηG.
Hopefully, this helps vividly illustrate how discrete objects are both reflective and coreflective, with [ the
discrete coreflector and

∫
the discrete reflector. Finally, this is where Lawvere suggests one can find a

formalization of the ”unity of opposites”.
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3. Endnote: An Aside On Monoidal Categories

however, it is worth studying the following definition and examples in their own right if one wants to
appreciate enriched categories:

Definition. A monoidal category is a category A equipped with the 5−tuple (⊗, I, λ, ρ, α) where:
(1) ⊗ : A×A→ A, called the monoidal product (or tensor product) is a bifunctor;
(2) I : A called the unit object or tensor unit;
(3) A natural transformation λ called the left-unitor, with components λa : I ⊗ a→ a;
(4) A natural transformation ρ called the right-unitor, with components ρa : a⊗ I → a;
(5) A natural transformation α called the associator with component αa,b,c : (a⊗ b)⊗ c→ a⊗ (b⊗ c).

which satisfy the following coherence conditions:

(a⊗ I)⊗ b a⊗ (I ⊗ b)

a⊗ b

αa,I,b

ρa ⊗ idb ida ⊗ λb

and

((a⊗ b)⊗ c)⊗ d

(a⊗ (b⊗ c))⊗ d

a⊗ ((b⊗ c)⊗ d)

(a⊗ b)⊗ (c⊗ d) a⊗ (b⊗ (c⊗ d))

αa,b,c ⊗ idd αa,b⊗c,d

ida ⊗ αb,c,dαa⊗b,c,d

αa,b,c⊗d

Example. The most immediately sensible example of a monoidal category is the category R − mod over a
commutative ring R, where ⊗R, the tensor product of modules, is the monoidal product and the ring R is
the unit (as R is a module over itself). Immediately it follows that the category Veck of vector spaces over
a field k and Ab, the category of abelian groups, with Z as the unit, are two other examples of monoidal
categories.
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