
Learning To Learn OCaml Lecture 2

Alexander Berenbeim

2016-10-18 Tue

Contents

1 Building Programs By Building Functions 1
1.1 Naming . 1
1.2 Example of Naming . 2
1.3 The Limits of Naming . 2
1.4 Building Boolean Predicates :: Pattern Recognition 2
1.5 Building Boolean Predicates :: Algebraic Identity 3
1.6 Recursive functions . 3
1.7 Recursive Constructions :: Lists 3
1.8 Some List Operations Example 4
1.9 Knowing When Things Will Go Wrong 4
1.10 Raising Exceptions . 4
1.11 More Exceptions . 5
1.12 Handling Exceptions . 5
1.13 Dictionaries . 5
1.14 Example: Reading a Dictionary 6

1 Building Programs By Building Functions

1.1 Naming

• It is inefficient to re-enter sub-expressions within the same program.

• OCaml allows us to define a name to stand in for a result of a single
evaluated expression with the let ... = ... in construct

1

1.2 Example of Naming

100*100*100;;
-: int = 1000000
let x = 100;;
val x : int = 100
let x = 100 in x * x * x;;
- : int = 1000000
let cube x = x * x * x;;
val cube : int -> int = <fun>
cube 100;;
- : int = 1000000

1.3 The Limits of Naming

• Using our cube function from the previous slide

cube false;;
Error: This expression has type bool
but an expression was expected of type int

• OCaml is a powerful and challenging language to use because of its type
inference system

• OCaml is statically typed and checks types at compile-time, so we can
catch immediately what is wrong with our example. In this case, cube
will only accept as an input an argument of type int.

• As we will see in a bit, OCaml cannot recognize all errors; a good
programmer will anticipate that exceptions will need to be raised.

1.4 Building Boolean Predicates :: Pattern Recognition

• A classic programming application is boolean classification.

• OCaml allows us to define Boolean classifications for all types using
pattern recognition and the inductive constructions of types

let isvowel c =
c = ’a’ || c = ’e’ || c = ’i’ || c = ’o’ || c = ’u’;;
val isvowel : char -> bool = <fun>

2

1.5 Building Boolean Predicates :: Algebraic Identity

let addtotwentyone a b =
a + b = 21;;
val addtoten : int -> int -> bool = <fun>
addtotwentyone 8 12;;
- : bool = false
addtotwentyone 9 12;;
- : bool = true

1.6 Recursive functions

• Recursion is powerful.

• Recursive constructions are explicitly defined by invoking the rec con-
structor in OCaml

let rec gcd a b =
#if b = 0 then a else gcd b (a mod b);;
val gcd : int -> int -> int = <fun>
gcd 64000 3456;;
- : int = 128
let rec factorial a =
if a = 1 then 1 else a * factorial (a - 1);;
val factorial : int -> int = <fun>

1.7 Recursive Constructions :: Lists

• Lists are a polymorphic construction in OCaml with two pre-defined
operators :: (the "cons" operator) and @ (the "append" operator)
used to put witnesses of a type α an α list or attach an α list to an α
list

1::[2;3;4];;
- : int list = [1;2;3;4];;
[false;true] @ [true;true];;
- : bool list = [false;true;true;true];;
let rec length l =
match l with
[] -> 0
| h :: t -> 1 + length t;;
val length : ’a list -> int = <fun>

3

1.8 Some List Operations Example

let rec take n l =
if n < 1 then [] else
match l with
h :: t -> h :: take (n-1) t;;
- : int -> ’a list -> ’a list = <fun>
let rec drop n l =
if n < 1 then l else
match l with
h :: t -> drop (n - 1) t;;
- : int -> ’a list -> ’a list = <fun>

1.9 Knowing When Things Will Go Wrong

• The operations defined on the previous slide aren’t pattern exhaustive;
we shouldn’t trust that it will work because of what we know about
the integers and the fixed points in those arguments.

• take 2 [true] will Raise an Exception, ="Match Failure"=.

• Exceptions are how OCaml reports such run-time errors.

• OCaml has some built-in exceptions like Division_by_zero, although
we will often have to make these exceptions ourselves.

10 / 0;;
Exception : Division_by_zero.

• We make these exceptions ourselves with the raise constructor.

1.10 Raising Exceptions

• We fix our functions on lists as follows:

let rec take n l =
match l with
[] -> if n = 0
then []
else raise (Invalid_argument "take")
| h :: t -> if n < 0
then raise (Invalid_argument "take")

4

else if n = 0 then [] else
h::take (n - 1) t
- : int -> ’a list -> ’a list = <fun>

• Additional Exercise: Fix the drop function.

1.11 More Exceptions

• We can do more than raising exceptions in functions; we can define
them.

• These two examples carry an integer along with the exception; that
is, we can define Exceptions that use the of construct to introduce the
type of information that the exception carries.

exception Undefined of int;;
exception Undefined of int
let f x = if x = 0 then raise (Undefined 0)
else 100 / x;;
val f : int -> int = <fun>
f 6 = 16;;
- : int = 16
f 0 ;;
Exception Undefined 0.

1.12 Handling Exceptions

• We may not only raise exception; we may handle exceptions with
an exception handler written using the try ... with contruct

let safe_divide x y =
try x / y with
Division_by_zero -> 0;;

val safe_divide : int -> int -> int = <fun>

1.13 Dictionaries

• One common structure is the dictionary which associates keys with
values

• We can think of dictionaries as a witness of an α×β list

5

• Product types have naturally defined projection maps:

let fst p = match p with (x,_) -> x;;
val fst : ’a * ’b -> ’a = <fun>
let snd p = match p with (_,y) -> y;;
val snd : ’a * ’b -> ’b = <fun>

1.14 Example: Reading a Dictionary

let rec lookup x l =
match l with
[] -> raise Not_found
| (k,v) :: t ->
if k = x then v else lookup x t;;
val lookup : ’a -> (’a * ’b) list -> ’b = <fun>

6

	Building Programs By Building Functions
	Naming
	Example of Naming
	The Limits of Naming
	Building Boolean Predicates :: Pattern Recognition
	Building Boolean Predicates :: Algebraic Identity
	Recursive functions
	Recursive Constructions :: Lists
	Some List Operations Example
	Knowing When Things Will Go Wrong
	Raising Exceptions
	More Exceptions
	Handling Exceptions
	Dictionaries
	Example: Reading a Dictionary

