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Combinatorial Games

@ A combinatorial game is a two-player game with no hidden
information such that the consequence of each move will be known
before a move is made (ie no random elements).

@ We follow convention and let Left and Right denote Players | and Il
respectively.

e If G and H are combinatorial games, H is a Left option of G
(respectively a Right option) if Left (respectively Right) can move
directly from G to H.

@ We denote the set (class) of Left options by L¢, and Right options

Rc, with legal moves in G from the left by G- (respectively from the
right by GF).

@ A position of G are G and allthe positions of any option of G.

@ In a game of Normal play, the last player to move wins;in Mis\ ere
play, the last player to moves loses.
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@ A run of G of length k is a sequence of positions Gy, G, ..., Gk such
that Go = G and each Gjy1 € Lg, URg,.
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@ The Descending Game Condition: There is no infinite sequence of
games G; = (L;, R;), such that Gj11 € L; UR; for all i € w.

Alexander Berenbeim A Tour of Games and Numbers Today 4/29



Combinatorial Games (cont'd)

@ A run of G of length k is a sequence of positions Gy, G, ..., Gk such
that Go = G and each Gjy1 € Lg, URg,.

@ The Descending Game Condition: There is no infinite sequence of
games G; = (L;, R;), such that Gj11 € L; UR; for all i € w.

@ An alternating run is a run of successive moves alternating between
Left and Right

Alexander Berenbeim A Tour of Games and Numbers Today 4/29



Combinatorial Games (cont'd)

@ A run of G of length k is a sequence of positions Gy, G, ..., Gk such
that Go = G and each Gjy1 € Lg, URg,.

@ The Descending Game Condition: There is no infinite sequence of
games G; = (L;, R;), such that Gj11 € L; UR; for all i € w.

@ An alternating run is a run of successive moves alternating between
Left and Right

@ An alternating run of length k is a play of G if either k = oo or else
Gy has no options for the player to move.
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Combinatorial Games (cont'd)

A run of G of length k is a sequence of positions Gy, Gi, ..., Gk such
that Go = G and each Gjy1 € Lg, URg,.

The Descending Game Condition: There is no infinite sequence of
games G; = (L;, R;), such that Gj11 € L; UR; for all i € w.

An alternating run is a run of successive moves alternating between
Left and Right

An alternating run of length k is a play of G if either k = oo or else
Gy has no options for the player to move.

H is a subposition of G if there exists a sequence of consecutive (not
necessarily alternating) moves leading from G to H
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Classifying Combinatorial Games

The following are several structural constraints used to study games:

G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;

G is short if it is finite and loopfree;

G is impartial if Left and Right have the exact same moves available
from every subposition of G;

e G is transfinite if it is not necessarily finite;
@ G is loopy if it is not necessarily loopfree;

@ G is partizan if it is not necessarily impartial;
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Partizan Games

@ The class of transfinite partizan games PG is recursively defined as
follows: Suppose that L and R denote two sets of games in

PG. Then the ordered pair G := (L, R) € PG provided G satisfies the
Descending Game Condition.
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Partizan Games

@ The class of transfinite partizan games PG is recursively defined as
follows: Suppose that L and R denote two sets of games in

PG. Then the ordered pair G := (L, R) € PG provided G satisfies the
Descending Game Condition.We denote the ordered pair by

G ={L} [{R} ={Le} | {Rec}.

@ The DCG is equivalent to the Conway induction principle: for
n>1, Pis a property of an n — tuple of games Gy,..., G, ifitis a
property of all left and right options for G;.

@ The endgame is given by 0 = {} | {}, as neither player can move. We
let 1 ={0}|{} and —1 = {} | {0}.

o We say G > 0 if there is a winning strategy for the left; G < 0 if there
is a winning strategy for the right, and G||0, or G is fuzzy if there is a
winning strategy for the first player, and G = 0 if there is a winning
strategy for the second player.
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Putting a group structure on games
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@ Given G, H € PG, we define G + H as follows:

G+H={G' +H,G+H} | {GFR+H G+HY
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Putting a group structure on games

@ Partizan games have an abelian group structure
@ Given G, H € PG, we define G + H as follows:

G+H={G' +H,G+H} | {GFR+H G+HY

@ We define the negation of a game G € PG by
~G={-G6"}|{-6"}
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Ordering Partizan Games

@ We define a partial ordering > on PG as follows:
G>H < —-(3GR € Rg(H > GR)vIH: € Ly(H" > G))

with G > 0 (similarly G < 0) whenever there is no GR < 0.
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Ordering Partizan Games

@ We define a partial ordering > on PG as follows:
G>H < —-(3GR € Rg(H > GR)vIH: € Ly(H" > G))

with G > 0 (similarly G < 0) whenever there is no GR < 0.
@ Then G > 0 (similarly G<0) defined by G > 0 A —=(G < 0).

e PG is a partially ordered abelian group, i.e. if G > H, then for any K,
G+K>H+K.

@ Furthermore, Lurie proved that PG is a universal embedding object in
the sense that every ordered abelian group embeds into PG.
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@ The surreal numbers (or just numbers), No, form a subclass of partizan
games such that the set of left and right options satisfy L¢ < Rg.
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Numbers as Partizan Games

@ The surreal numbers (or just numbers), No, form a subclass of partizan
games such that the set of left and right options satisfy L¢ < Rg.
@ We can inductively construct PG = |J PG, with

acOn
PGy = {0}
PG ={{G"} | {G}: Lg,Rc C | J PGy}

BE«

@ We form No= [J No, by letting Nog = PGy and
a€On

Noo = {{a'} | {a"}: Lo < Ra A Lo, Ra C U Nog}
Bea
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Numbers as Partizan Games

@ The surreal numbers (or just numbers), No, form a subclass of partizan
games such that the set of left and right options satisfy L¢ < Rg.
@ We can inductively construct PG = |J PG, with

acOn
PGy = {0}
PG ={{G"} | {G}: Lg,Rc C | J PGy}

BE«

@ We form No= [J No, by letting Nog = PGy and
a€On

Noo = {{a'} | {a"}: Lo < Ra A Lo, Ra C U Nog}
Bea

@ Given this construction, one can readily encode the ordinals as games,
(or more precisely), as numbers as follows:

a=ald={a'} | {}.
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@ An alternate formulation of No is given by Gonshor as follows:
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Numbers as subsets of ordinals

@ An alternate formulation of No is given by Gonshor as follows:
@ ac Noifandonlyif a:a— 2, where 2= {5, ®},and we induce an
ordering by
© < undefined < @

so that
a< b < 3Javs € aa(B) = b(p)

Na(a) # b(a) A (a(a) = &V b(a) = ®)
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@ An alternate formulation of No is given by Gonshor as follows:
@ ac Noifandonlyif a:a— 2, where 2= {5, ®},and we induce an

ordering by

© < undefined < @
so that
a<b <= Javp € aa(B) = b(p)
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@ Furthermore, there is the partial order <, where a <; b if and only if

a C b as functions.

Alexander Berenbeim A Tour of Games and Numbers Today 10/29



Numbers as subsets of ordinals

@ An alternate formulation of No is given by Gonshor as follows:
@ ac Noifandonlyif a:a— 2, where 2= {5, ®},and we induce an
ordering by
© < undefined < @
so that
a<b <= Javp € aa(B) = b(p)

Na(a) # b(a) A (a(a) = &V b(a) = @)
@ Furthermore, there is the partial order <, where a <; b if and only if
a C b as functions.

@ As in the case of games, surreal numbers are constructed from simpler
numbers, i.e. there is a canonical representation a = {al} | {aF}.
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Numbers as subsets of ordinals

@ An alternate formulation of No is given by Gonshor as follows:
@ ac Noifandonlyif a:a— 2, where 2= {5, ®},and we induce an
ordering by
© < undefined < @

so that
a< b < 3Javs € aa(B) = b(p)

Na(a) # b(a) A (a(a) = &V b(a) = @)
@ Furthermore, there is the partial order <, where a <; b if and only if
a C b as functions.

@ As in the case of games, surreal numbers are constructed from simpler
numbers, i.e. there is a canonical representation a = {al} | {aF}.

(Fundamental Existence Theorem) For all sets of numbers F < G, there is
a unique c of minimal length such that F < ¢ < G.
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@ By the previous construction, we have

No = U @2

a€On
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@ By the previous construction, we have

No = U @2

a€On

@ We can alternately define numbers by first considering O the space
<OnOn x On, where f € @ is a list of ordinal length o of pairs of
ordinal numbers.
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@ By the previous construction, we have

No = U @2

a€On

@ We can alternately define numbers by first considering O the space
<OnOn x On, where f € @ is a list of ordinal length o of pairs of
ordinal numbers.

@ We can then define an equivalence relation R on O by pf = pg, where
p is a function defined by transfinite recursion and pattern matching:
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@ By the previous construction, we have

No = U @2
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@ We can alternately define numbers by first considering O the space
<OnOn x On, where f € @ is a list of ordinal length o of pairs of
ordinal numbers.

@ We can then define an equivalence relation R on O by pf = pg, where
p is a function defined by transfinite recursion and pattern matching:
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Numbers as sequences of ordinals

@ By the previous construction, we have

No = U @2

a€On

@ We can alternately define numbers by first considering O the space
<OnOn x On, where f € @ is a list of ordinal length o of pairs of
ordinal numbers.

@ We can then define an equivalence relation R on O by pf = pg, where
p is a function defined by transfinite recursion and pattern matching:

We match f with
° (o, ) = (a,B)

@ h: (a1, p1): (ag,B2) : T = match (51, ap with
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Numbers as sequences of ordinals

@ By the previous construction, we have

No = U @2

a€On

@ We can alternately define numbers by first considering O the space
<OnOn x On, where f € @ is a list of ordinal length o of pairs of
ordinal numbers.

@ We can then define an equivalence relation R on O by pf = pg, where
p is a function defined by transfinite recursion and pattern matching:

We match f with
° (o, ) = (a,B)
@ h: (a1, p1): (ag,B2) : T = match (51, ap with
e (0,0)= h:p({a1,B2) : 7)
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Numbers as sequences of ordinals

@ By the previous construction, we have

No = U @2

a€On

@ We can alternately define numbers by first considering O the space
<OnOn x On, where f € @ is a list of ordinal length o of pairs of
ordinal numbers.

@ We can then define an equivalence relation R on O by pf = pg, where
p is a function defined by transfinite recursion and pattern matching:

We match f with
° (o, ) = (a,B)
@ h: (a1, p1): (ag,B2) : T = match (51, ap with
° (0,0) = h:p((az,p2) : 7)
° (_,0)=h:p({er, 1+ B2)) : 7)
o (0, )=h:p({ar1+az Ba):7)
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Numbers as sequences of ordinals

@ By the previous construction, we have

No = U @2

a€On

@ We can alternately define numbers by first considering O the space
<OnOn x On, where f € @ is a list of ordinal length o of pairs of
ordinal numbers.

@ We can then define an equivalence relation R on O by pf = pg, where
p is a function defined by transfinite recursion and pattern matching:

We match f with
° (o, 8) = (a, )

@ h: (a1, p1): (ag,B2) : T = match (51, ap with
o (0,0) = h:p({a1,B2) : 7)
° (_70) = h: p(<avﬂl +62)> : T)
o (0, )= h:p({ar + a2, B2): 7)
o (_, Y=h:{a1,5): p({az, f2) : T).

Alexander Berenbeim A Tour of Games and Numbers Today 11/29



Numbers as sequences of ordinals
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Numbers as sequences of ordinals

e We can then identify No = p(O)
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Numbers as sequences of ordinals

e We can then identify No = p(O)

@ In turn, we can describe a surreal number a as consisting of ¢a many
ordered pairs (o, 3,,) where o, (a) =0 if u =0, or p € Lim(¢a), or
1 > ¢a (if we consider ©"On x On restricted to eventually zero
sequences instead).

Alexander Berenbeim A Tour of Games and Numbers Today 12 /29



Numbers as sequences of ordinals

e We can then identify No = p(O)

@ In turn, we can describe a surreal number a as consisting of ¢a many
ordered pairs (o, 3,,) where o, (a) =0 if u =0, or p € Lim(¢a), or
1 > ¢a (if we consider ©"On x On restricted to eventually zero
sequences instead).

o 3,(a) =0 implies that = max ¢a or ;1 > ¢a.
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Numbers as sequences of ordinals

@ We can then identify No = p(O)

@ In turn, we can describe a surreal number a as consisting of ¢a many
ordered pairs (o, 3,,) where o, (a) =0 if u =0, or p € Lim(¢a), or
1 > ¢a (if we consider ©"On x On restricted to eventually zero
sequences instead).

o 3,(a) =0 implies that = max ¢a or ;1 > ¢a.

o We let y,(a) = @ au(a) and set a™ = P ay(a).
i<p HEPa
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Numbers as sequences of ordinals

We can then identify No = p(O)

In turn, we can describe a surreal number a as consisting of ¢a many
ordered pairs (o, 3,,) where o, (a) =0 if u =0, or p € Lim(¢a), or
1 > ¢a (if we consider ©"On x On restricted to eventually zero
sequences instead).

Bu(a) = 0 implies that ;1 = max¢a or p > ¢a.
We let y,(a) = @ au(a) and set a™ = P ay(a).
i<p HEPa
@ We can see this agrees with the previous construction of the surreal

numbers, as ta= @ a, B Py
pEPa
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Arithmetic Operations

@ As mentioned in an earlier section, there is a genetic definition for
addition of games which restricts to addition on the ordinary numbers.
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Arithmetic Operations

@ As mentioned in an earlier section, there is a genetic definition for
addition of games which restricts to addition on the ordinary numbers.
@ The genetic definition of multiplication is as follows:

ab = {atb+ abt — atbt, aRb + abR — aRbR}|
{atb+ ab® — atbR aRb + ab® — AR bt
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@ The genetic definition of multiplication is as follows:

ab = {atb+ abt — atbt, aRb + abR — aRbR}|
{atb+ ab® — atbR aRb + ab® — AR bt

@ We define multiplicative inverses for a > 0 as follows:
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Arithmetic Operations

@ As mentioned in an earlier section, there is a genetic definition for
addition of games which restricts to addition on the ordinary numbers.
@ The genetic definition of multiplication is as follows:

ab = {atb+ abt — atbt, aRb + abR — aRbR}|
{atb + abR — atbR, aRb + abR — aR bt}
@ We define multiplicative inverses for a > 0 as follows: let (a1, ..., a,)
be a finite sequence where a; € L, U R,\{0}.
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Arithmetic Operations

@ As mentioned in an earlier section, there is a genetic definition for
addition of games which restricts to addition on the ordinary numbers.
@ The genetic definition of multiplication is as follows:

ab = {atb+ abt — atbt, aRb + abR — aRbR}|
{atb+ ab® — atbR aRb + ab® — AR bt
@ We define multiplicative inverses for a > 0 as follows: let (a1, ..., a,)

be a finite sequence where a; € L, U R,\{0}.
@ For b € No, $ define b°ai as the unique solution to

(a—aj)b+aix=1
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addition of games which restricts to addition on the ordinary numbers.
The genetic definition of multiplication is as follows:

ab = {atb+ abt — atbt, aRb + abR — aRbR}|
{atb+ ab® — atbR aRb + ab® — AR bt
We define multiplicative inverses for a > 0 as follows: let (aj,...,a,)

be a finite sequence where a; € L, U R,\{0}.
For b € No, $ define b°a/ as the unique solution to

(a—aj)b+aix=1

The solution exists by the inductive hypothesis, as each a; is an initial
segment of a with an inverse, and uniqueness is automatic.
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Arithmetic Operations

As mentioned in an earlier section, there is a genetic definition for
addition of games which restricts to addition on the ordinary numbers.
The genetic definition of multiplication is as follows:

ab = {atb+ abt — atbt, aRb + abR — aRbR}|
{atb+ ab® — atbR aRb + ab® — AR bt
We define multiplicative inverses for a > 0 as follows: let (aj,...,a,)

be a finite sequence where a; € L, U R,\{0}.
For b € No, $ define b°a/ as the unique solution to

(a—aj)b+aix=1

The solution exists by the inductive hypothesis, as each a; is an initial
segment of a with an inverse, and uniqueness is automatic.
Finally, let () =0, and (a1,...,an, an+1) = (a1, ..., an) an+1-

Alexander Berenbeim A Tour of Games and Numbers Today 13 /29



Arithmetic Operations

As mentioned in an earlier section, there is a genetic definition for
addition of games which restricts to addition on the ordinary numbers.
The genetic definition of multiplication is as follows:

ab = {atb+ abt — atbt, aRb + abR — aRbR}|
{atb+ ab® — atbR aRb + ab® — AR bt
We define multiplicative inverses for a > 0 as follows: let (aj,...,a,)

be a finite sequence where a; € L, U R,\{0}.
For b € No, $ define b°a/ as the unique solution to

(a—aj)b+aix=1

The solution exists by the inductive hypothesis, as each a; is an initial
segment of a with an inverse, and uniqueness is automatic.

Finally, let () =0, and (a1,...,an, an+1) = (a1, ..., an)°an+1.Now
define a=! = F|G, where F consists of (a1, ..., a,) where the number
of a; € L, is even and G where the number of a; € L, is odd.
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Ordinal Functions
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Ordinal Functions

@ One natural function to consider is the length function, which ought
to return the domain of a surreal number a.
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Ordinal Functions

@ One natural function to consider is the length function, which ought
to return the domain of a surreal number a. This can be given by

o(a) = {«(a"), u(a")} | {}
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Ordinal Functions

@ One natural function to consider is the length function, which ought
to return the domain of a surreal number a. This can be given by

o(a) = {«(a"), u(a")} | {}

@ One also has the w function

w(a) = {0, nw(a")} [ {w(a)27"}
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Ordinal Functions

@ One natural function to consider is the length function, which ought
to return the domain of a surreal number a. This can be given by

o(a) = {«(a"), u(a")} | {}

@ One also has the w function

w(a) = {0, nw(a")} [ {w(a)27"}

o Let w(y(a) denote the n fold composition of w(---(w(a)---), with
w(o)(a) = a and w(,11)(a) = w(w(n)(a))-
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Ordinal Functions

@ One natural function to consider is the length function, which ought
to return the domain of a surreal number a. This can be given by

o(a) = {«(a"), u(a")} | {}

@ One also has the w function

w(a) = {0, nw(a")} | {w(a¥)27"}
o Let w(y(a) denote the n fold composition of w(---(w(a)---), with
w(o)(a) = a and w(,,+1)(a) == w(w(n)(a)).
e We define

e(a) = {wn) (1), wim(e(@) + D} | {wm(e(@®) — 1)}
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exp, log, and beyond: Two Normal Forms
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exp, log, and beyond: Two Normal Forms

@ One can also provide genetic definitions for exp and log.
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- Two Normal Forms

@ One can also provide genetic definitions for exp and log.

o Conway showed that all surreal numbers have a normal form with base
w, i.e. for all a € No there is a descending sequence (a;) of length va
and r; € R* such that

a:Z )r, ZW ri

i€va

Alexander Berenbeim A Tour of Games and Numbers Today 15 /29



exp, log, and beyond: Two Normal Forms

@ One can also provide genetic definitions for exp and log.

o Conway showed that all surreal numbers have a normal form with base
w, i.e. for all a € No there is a descending sequence (a;) of length va
and r; € R* such that

a= E (aj)ri = E wir
i€va
@ One can also put a Ressayre normal form on surreals, namely,
a=Y exp(y)r
pnepa

, Where there are pit many summands, and y,, is a descending
sequences of surreal numbers.

Alexander Berenbeim A Tour of Games and Numbers Today 15 /29



exp, log, and beyond: Two Normal Forms

@ One can also provide genetic definitions for exp and log.

o Conway showed that all surreal numbers have a normal form with base
w, i.e. for all a € No there is a descending sequence (a;) of length va
and r; € R* such that

a= E (aj)ri = E wir
i€va
@ One can also put a Ressayre normal form on surreals, namely,
a=Y exp(y)r
pnepa

, Where there are pit many summands, and y,, is a descending
sequences of surreal numbers.

@ These two respective normal forms can be used to define Krull
valuations —¢ on No, where £ : No* — No where
¢(a) = max{a;j € No | r; # 0}.
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Sign sequence lemma preliminaries
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Sign sequence lemma preliminaries

@ The

concatenation operation respects standard results on ordinal length, i.e.
t(a —~ b) =1(a) ®u(b)

as can be verified by an induction argument on the lengths of numbers.

Alexander Berenbeim A Tour of Games and Numbers Today 16 /29



Sign sequence lemma preliminaries

@ The

concatenation operation respects standard results on ordinal length, i.e.
t(a —~ b) =1(a) ®u(b)

as can be verified by an induction argument on the lengths of numbers.
e It is known by an induction argument that «(a + b) < «(a) + ¢(b).
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Sign sequence lemma preliminaries

@ The
concatenation operation respects standard results on ordinal length, i.e.
t(a —~ b) =1(a) ®u(b)

as can be verified by an induction argument on the lengths of numbers.
e It is known by an induction argument that «(a + b) < «(a) + ¢(b).

@ The short term goal of my research is prove the bound
t(ab) < u(a)u(b)
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as can be verified by an induction argument on the lengths of numbers.
e It is known by an induction argument that «(a + b) < «(a) + ¢(b).

@ The short term goal of my research is prove the bound
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@ Towards that end, we first need to describe Gonshor's sign sequence
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Sign sequence lemma preliminaries

@ The

concatenation operation respects standard results on ordinal length, i.e.
t(a —~ b) =1(a) ®u(b)

as can be verified by an induction argument on the lengths of numbers.
e It is known by an induction argument that «(a + b) < «(a) + ¢(b).
@ The short term goal of my research is prove the bound
t(ab) < u(a)u(b)
@ Towards that end, we first need to describe Gonshor's sign sequence
lemma:
o Given a € Nos, define a” to be the surreal number

attained by omitting the first @ sign.
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Sign sequence lemma preliminaries

@ The

concatenation operation respects standard results on ordinal length, i.e.
t(a —~ b) =1(a) ®u(b)

as can be verified by an induction argument on the lengths of numbers.
e It is known by an induction argument that «(a + b) < «(a) + ¢(b).
@ The short term goal of my research is prove the bound
t(ab) < u(a)u(b)
@ Towards that end, we first need to describe Gonshor's sign sequence
lemma:
o Given a € Nos, define a” to be the surreal number
attained by omitting the first @ sign.
o Similarly, given a € Nog, define a to be the surreal number attained
by omitting the first © sign.
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The Sign Sequence Lemma: Reductions
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The Sign Sequence Lemma: Reductions

Given a surreal number a = ) w@r; in normal form, we define the
i€va

reduced sequence (af|i € va) by omitting © from the following sign

sequences:
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The Sign Sequence Lemma: Reductions

Given a surreal number a = ) w@r; in normal form, we define the
i€va

reduced sequence (af|i € va) by omitting © from the following sign

sequences:

e given v € On, if a;(y) = © and there exists j < i such that
aj(8) = a;() for all § <, then omit the o*" ©;
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The Sign Sequence Lemma: Reductions

Given a surreal number a = ) w@r; in normal form, we define the
i€va

reduced sequence (af|i € va) by omitting © from the following sign

sequences:

e given v € On, if a;(y) = © and there exists j < i such that
aj(8) = a;() for all § <, then omit the o*" ©;

@ if i is a successor, a;_1 — © C a; and if r;_1 is not a dyadic rational,
then omit © after a;_1 in a;.
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The Sign Sequence Lemma
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The Sign Sequence Lemma

Given a = ((«j, Bi))icpa, then w? has the sign sequence

<w7°, uﬂOHB) g ((w”", w71+15i>)0<i<;¢
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The Sign Sequence Lemma

Given a = ((«j, Bi))icpa, then w? has the sign sequence

(w%, w’Yo-Hﬁ) — ((w”", W71+15i>)0<i<u

Theorem

Given a positive real r with sign sequence ({p;, o)), the sign sequence of
war is

(W) ~ (W™ ph,w” o0y ~ ((w™ pr,w™ 0} 1 0 < i <ur)

with w® p and w? o being the standard ordinal multiplication (with
absorption).
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The Sign Sequence Lemma

Given a = ((«j, Bi))icpa, then w? has the sign sequence

<w’YO’ W,YO—H-B) — (<w'Yi’ w71+15i>)0<i<u

Theorem

Given a positive real r with sign sequence ({p;, o)), the sign sequence of
war is

(w?) ~ (wa+p|6,wa+ao> ~ (<wa+p,',wa+a,-) :0<i<ur)

with w® p and w? o being the standard ordinal multiplication (with
absorption). If r is a negative real, we reverse the signs.
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The Sign Sequence Lemma ctd
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The Sign Sequence Lemma ctd

M Given a= ) wr,

i€va

(3) ="icva (wa'? fi)
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The Sign Sequence Lemma ctd

M Given a= > wr;,

i€va

(a) ="icva (wa'g fi)

Corollary

For all a € No, with Conway normal form ) w(a;)ri, we have
i€va

((a) = P uw(a?)r)

i€va
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The Sign Sequence Lemma ctd

M Given a= > wr;,

i€va

(a) =—icva (W)

Corollary

For all a € No, with Conway normal form ) w(a;)ri, we have

i€va
«(a) = P (w(af)n)
i€va )
Proof.
This follows directly from «(a —~ b) = «(a) @ ¢(b), and by induction on
va. Ul

v
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Supposing that ¢(a) < ¢(b) < ¢(c):
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Supposing that ¢(a) < ¢(b) < ¢(c):
e (a+ b) <ula)+ u(b);
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Supposing that ¢(a) < ¢(b) < ¢(c):
e (a+ b) <ula)+ u(b);
o u(ab) < 3{(a)+ub),
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Supposing that «(a) < «(b) < u(c):
o t(a+ b) <u(a) + u(b);
e ((ab) < 3u(a)+u(b).
o |e(a™h)| < Rolu(a)l;
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Supposing that ¢(a) < ¢(b) < ¢(c):
e t(a+ b) < u(a)+ u(b);
o 1(ab) < 342)+ub),
o [u(a™t)| < No|e(a)];
e For a € No\D, then |c(w(a))| = [c(a)];
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Supposing that ¢(a) < ¢(b) < ¢(c):
e t(a+ b) < u(a)+ u(b);
o 1(ab) < 342)+ub),
o [u(a™t)| < No|e(a)];
e For a € No\D, then |c(w(a))| = [c(a)];

e for any non-zero real r and a, |t(w(a)) - r| = |t(w(a))];
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Supposing that ¢(a) < ¢(b) < ¢(c):
e t(a+b) <u(a) +u(b);
o u(ab) < 3{(a)+ub),
o [u(a™h)] < Nole(a)];
e For a € No\D, then |c(w(a))| = [c(a)];
e for any non-zero real r and a, |t(w(a)) - r| = |t(w(a))];
o If w(b)r is a term in the normal from of a, then

w(b)) < (a);
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Supposing that ¢(a) < ¢(b) < ¢(c):

e t(a+b) <u(a) +u(b);

o u(ab) < 3{(a)+ub),

o [u(a™h)] < Nole(a)];

e For a € No\D, then |c(w(a))| = [c(a)];

e for any non-zero real r and a, |t(w(a)) - r| = |t(w(a))];

o If w(b)r is a term in the normal from of a, then
w(b)) < «(a);

e Fora= ) w(aa)ra,
a€Ef

then || < |lubaeg[t(aa)w]|. (This result refers to the least upper bound of
ordinals on the right hand side, and cardinalities on the left hand side).

Alexander Berenbeim A Tour of Games and Numbers Today 20/29



Some facts ctd
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Some facts ctd

e For a= > w(an)ra, then
aEf

()] < [lubaegi(an), wl;
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Some facts ctd

e For a= > w(an)ra, then
a€p
[1(a)] < |lubaepe(aan), wl;
@ Fora= ) w(ay)r, and
a€p
lubaes(|f], [t(an)l; Ro) < &, then [u(a)] < &.
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Some facts ctd

e For a= > w(an)ra, then
a€gp
|1(a)] < |lubaepi(aa), wl;
@ Fora= ) w(ay)r, and
a€gp
lubaes (|81, [e(aa)l, Ro) < £, then |i(a)] < k.
@ The set of surreals with lengths less than a fixed ordinal € number
form a subfield of surreal numbers;
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Some facts ctd

e For a= > w(an)ra, then
aEf

|1(a)] < |lubaepi(aa), wl;

@ Fora= ) w(ay)r, and

a€Ef

lubaes (|81, [e(aa)l, Ro) < £, then |i(a)] < k.

@ The set of surreals with lengths less than a fixed ordinal € number

form a subfield of surreal numbers;

@ For ai,...,a, arbitrary surreal numbers and

ri,...,r, rational numbers, then [¢(D>_ ria;)| < | maxe(a;)|No.
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Some facts ctd

e For a= > w(an)ra, then
aEf

|1(a)] < |lubaepi(aa), wl;
@ Fora= ) w(ay)r, and
a€Ef
lubaes (|81, [e(aa)l, Ro) < £, then |i(a)] < k.
@ The set of surreals with lengths less than a fixed ordinal € number
form a subfield of surreal numbers;
@ For ai,...,a, arbitrary surreal numbers and
ri,...,r, rational numbers, then [¢(D>_ ria;)| < | maxe(a;)|No.
@ An ordinal upperbound for the cardinality of x will be the
least € number larger than «.
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Some facts ctd

e For a= > w(an)ra, then
aEf

|1(a)] < |lubaepi(aa), wl;

@ Fora= ) w(ay)r, and

a€ep

lubaes(18], |t(an)l, Ro) < &, then |i(a)] < k.

@ The set of surreals with lengths less than a fixed ordinal € number

form a subfield of surreal numbers;

@ For ai,...,a, arbitrary surreal numbers and
ri,...,r, rational numbers, then [¢(D>_ ria;)| < | maxe(a;)|No.

@ An ordinal upperbound for the cardinality of x will be the
least € number larger than «.

@ The subset of surreal numbers {a | |¢(a)| < k} for any
fixed infinite cardinal x will form a real closed field.
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Some facts ctd

e For a= > w(an)ra, then
aEf
|1(a)] < [lubaesi(aa), wl;
@ Fora= ) w(ay)r, and
a€Ef
lubaes(18], |t(an)l, Ro) < &, then |i(a)] < k.
@ The set of surreals with lengths less than a fixed ordinal € number
form a subfield of surreal numbers;
@ For ai,...,a, arbitrary surreal numbers and
ri,...,r, rational numbers, then [¢(D>_ ria;)| < | maxe(a;)|No.
@ An ordinal upperbound for the cardinality of x will be the
least € number larger than «.
@ The subset of surreal numbers {a | |¢(a)| < k} for any
fixed infinite cardinal s will form a real closed field. Furthermore, since all
operations will depend on finitely many elements of the condition «(a) < d,
we may strengthen this to «(a) < d.

Alexander Berenbeim A Tour of Games and Numbers Today 21/29



Some facts ctd

Alexander Berenbeim A Tour of Games and Numbers Today 22 /29



Some facts ctd

e For dyadic rationals a > 0,

t(a) = «([a]) + ¢t(a — [a]) where [a] denotes the natural number part of a;
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Some facts ctd

e For dyadic rationals a > 0,

t(a) = «([a]) + ¢t(a — [a]) where [a] denotes the natural number part of a;
e For a,b € R, 1(ab) < (a)u(b);
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Some facts ctd

e For dyadic rationals a > 0,

t(a) = «([a]) + ¢(a — [a]) where [a] denotes the natural number part of a;
e For a,b € R, «(ab) < i(a)(b);
@ Let x,y € No, and 0 < r € R, then we have:

Alexander Berenbeim A Tour of Games and Numbers Today 22/29



Some facts ctd

e For dyadic rationals a > 0,

t(a) = «([a]) + ¢(a — [a]) where [a] denotes the natural number part of a;
e For a,b € R, «(ab) < i(a)(b);
@ Let x,y € No, and 0 < r € R, then we have:

Q (x+y)m <xt+y™;
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Some facts ctd

e For dyadic rationals a > 0,
t(a) = ¢([a]) + ¢t(a — [a]) where [a] denotes the natural number part of a;
e For a,b € R, «(ab) < i(a)(b);
@ Let x,y € No, and 0 < r € R, then we have:
O (x+y)" <x*+yh
Q ((w¥) = w* o = w* ya for some ordinal & = ya > 0. Specifically, we

let x : No — On be the mapping which sends a to the corresponding
a. This x will be defined shortly.
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Some facts ctd

e For dyadic rationals a > 0,

t(a) = «([a]) + ¢(a — [a]) where [a] denotes the natural number part of a;
e For a,b € R, «(ab) < i(a)(b);
@ Let x,y € No, and 0 < r € R, then we have:

O (x+y)" <xt+yh

Q ((w¥) = w* o = w* ya for some ordinal & = ya > 0. Specifically, we
let x : No — On be the mapping which sends a to the corresponding
a. This x will be defined shortly.

Ww*r) = t(wX) B w @ ()

ris a dyadic rational, then $w(w* r)=c(w*) 4+ w* o(r");

© 0
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Some facts ctd

e For dyadic rationals a > 0,

t(a) = «([a]) + ¢(a — [a]) where [a] denotes the natural number part of a;
e For a,b € R, «(ab) < i(a)(b);
@ Let x,y € No, and 0 < r € R, then we have:

(x+y)t <xt+y ™

t(w) = w¥ o = wX ya for some ordinal a = ya > 0. Specifically, we
let x : No — On be the mapping which sends a to the corresponding
a. This x will be defined shortly.

Ww*r) = t(wX) B w @ ()

ris a dyadic rational, then $w(w* r)=c(w*) 4+ w* o(r");

if r is not a dyadic rational, then t(w*r) = t(w*) + w* (w — m) where
m € w is the coefficient of w*" in the Cantor normal form of ¢(w(x)).

o
2]

© 00
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Some facts ctd

@ For all surreal numbers x and y such that

(w W) < (w)e(wY), then for all r;s € R,

((W¥r)(w’s)) < v(w*r)u(ws)
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Some facts ctd

@ For all surreal numbers x and y such that
(w W) < (w)e(wY), then for all r;s € R,

((W¥r)(w’s)) < v(w*r)u(ws)

o If a=wr and b = wYs, then (ab) < v(a)c(b).
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Some facts ctd

@ For all surreal numbers x and y such that

(w W) < (w)e(wY), then for all r;s € R,

((W¥r)(w’s)) < v(w*r)u(ws)

o If a=wXr and b =ws, then 1(ab) < u(a)u(b).
e Forall a, «(a) < 1(w?) < wHa).
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Some facts ctd

@ For all surreal numbers x and y such that

(w W) < (w)e(wY), then for all r;s € R,

((W¥r)(w’s)) < v(w*r)u(ws)

o If a=wXr and b =ws, then 1(ab) < u(a)u(b).
e Forall a, «(a) < 1(w?) < wHa).

e For all a, va < a;
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Some facts ctd

@ For all surreal numbers x and y such that

(w W) < (w)e(wY), then for all r;s € R,

((W¥r)(w’s)) < v(w*r)u(ws)

If a=w*r and b = w”’s, then «(ab) < i(a)c(b).
For all a, ¢(a) < 1(w?) < wHa).

For all a, va < .a;

For all @ € va, t(wr,) < (a);
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Some facts ctd

@ For all surreal numbers x and y such that

(w W) < (w)e(wY), then for all r;s € R,

((W¥r)(w’s)) < v(w*r)u(ws)

If a=w*r and b = w”’s, then «(ab) < i(a)c(b).

For all a, ¢(a) < 1(w?) < wHa):

For all a, va < .a;

For all @ € va, t(wr,) < (a);

If £ € On such that ((w?>r,) < & for all a € v(a), then 1(a) < Ev(a).
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Some facts ctd

@ For all surreal numbers x and y such that

(w W) < (w)e(wY), then for all r;s € R,

((W¥r)(w’s)) < v(w*r)u(ws)

If a=w*r and b = w”’s, then «(ab) < i(a)c(b).

For all a, ¢(a) < 1(w?) < wHa):

For all a, va < .a;

For all @ € va, t(wr,) < (a);

If £ € On such that ((w?>r,) < & for all a € v(a), then 1(a) < Ev(a).

For any surreal numbers a and b, t(ab) < wi(a)?u(b)?
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The x map

We define x : No — On as the map such that 1(w(a)) = w? x(a), as
follows:
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The x map

We define x : No — On as the map such that 1(w(a)) = w? x(a), as

follows:
(D Cu)@1l ¢ac Lim(On)
x(a) = | ness
D ow

where (,, is defined as follows:
o First, let £, = W™ @ uﬂ““,ﬁ’u, and let suppose each &, = wlmi,
ieNE,
where 5M7f > 5%,'4_1
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The x map

We define x : No — On as the map such that 1(w(a)) = w? x(a), as

follows:
{( @D ) @1 ¢ac Lim(On)

nEPa

(a) =
X D ow

where (,, is defined as follows:
o First, let £, = W™ @ uﬂ““,ﬁ’u, and let suppose each &, = wlmi,
ieNE,
where 5M7f > 5%,'4_1

@ Then define

(= wS ICEON(y, ®1Bd,; =at +()
B0 ow
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The x map

We define x : No — On as the map such that 1(w(a)) = w? x(a), as

follows:
(D Cu)@1l ¢ac Lim(On)
x(a) = | ness
D ow

where (,, is defined as follows:

o First, let £, = w & w¥1B,, and let suppose each &, = > woni,
iE€NE,
where 5M7f > 5%,'4_1

@ Then define

(= wS ICEON(y, ®1Bd,; =at +()
B0 ow

o Finally, set ¢, = > (i
NE,.
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Current work product lemma restated
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Current work product lemma restated

@ The goal is to strengthen the bound provided by Lou van den Dries
and Philip Ehrlich from t(ab) < wi(a)?(b)? to t(a)c(b).
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Current work product lemma restated

@ The goal is to strengthen the bound provided by Lou van den Dries
and Philip Ehrlich from t(ab) < wi(a)?(b)? to t(a)c(b).

@ We can begin by building off of their work which shows that
Yw(a+ b)) < v(w(a))u(w(b)).
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Current work product lemma restated

@ The goal is to strengthen the bound provided by Lou van den Dries
and Philip Ehrlich from t(ab) < wi(a)?(b)? to t(a)c(b).

@ We can begin by building off of their work which shows that
Yw(a+ b)) < v(w(a))u(w(b)).

@ If we can prove the product lemma for the case where a > b so that
x = w? 4+ wb, and y = w, that «(xy) < u(x)e(y), then by induction
this can prove the product lemam in general.
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Current work product lemma restated

@ The goal is to strengthen the bound provided by Lou van den Dries
and Philip Ehrlich from t(ab) < wi(a)?(b)? to t(a)c(b).

@ We can begin by building off of their work which shows that
Yw(a+ b)) < v(w(a))u(w(b)).

@ If we can prove the product lemma for the case where a > b so that
x = w? 4+ wb, and y = w, that «(xy) < u(x)e(y), then by induction
this can prove the product lemam in general.

@ In turn, since at = a°7, it suffices to show that if x(ab) < x(a)x(b),
as the principle obstruction is reduction.
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Current work product lemma restated

Let a > b and c be arbitrary surreal numbers. Consider (b + ¢)° the
reduction of (b + c) with respect to a+ ¢ and b° the reduction of b with
respect to a. Then x((b+ ¢)°) < x((b)°)x(c) implies

Uw((b+¢)?)) < u(b%)e(c).

Proof.

Recall from Fact ??, that (a+ b)t < a™ + bT, and w(x) = w*" xx. Since
reduction only eliminates & symbols, we find that

(b+c)°t=(b+c)t
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Current work product lemma restated

so if x((b+ ¢)° < x((b°))x(c), we have:

W (b + ¢)°)
= W (b +c)°)
wb+wc+x((b +¢)°)
W w x(b°)x(c)
W X (%) x(c)
= W x(b°)w x(c)

= 1(b°)e(c)

t((b+c)?)

IA A

Theorem

Let a > b and c be arbitrary surreal numbers. Consider (b + ¢)° the
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Applications

The following are known
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Applications

The following are known
@ , is an ordered abelian group if and only if & € " On
@ . is an ordered commutative ring if and only if $a € A"On"
@ . is a real closed field if and only if & € E"On

If we can prove the product lemma in its strict form, then we also have
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@ . is a real closed field if and only if & € E"On
If we can prove the product lemma in its strict form, then we also have

@ . is an additive divisible ordered abelian group if and only if
ael”N'On

@ ,\0 is a multiplicative divisible ordered abelian group if and only if
a € A"N'On.
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Applications

The following are known
@ , is an ordered abelian group if and only if & € " On
@ . is an ordered commutative ring if and only if $a € A"On"
@ . is a real closed field if and only if & € E"On
If we can prove the product lemma in its strict form, then we also have

@ . is an additive divisible ordered abelian group if and only if
ael”N'On

@ ,\0 is a multiplicative divisible ordered abelian group if and only if
a € A"N'On.

Moreover, these constructions are functorial in the sense that they can be
defined as enriched categories over the category of the ordinals.
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Applications

The following are known
@ , is an ordered abelian group if and only if & € " On
@ . is an ordered commutative ring if and only if $a € A"On"
@ . is a real closed field if and only if & € E"On
If we can prove the product lemma in its strict form, then we also have

@ . is an additive divisible ordered abelian group if and only if
ael”N'On

@ ,\0 is a multiplicative divisible ordered abelian group if and only if
a € A"N'On.

Moreover, these constructions are functorial in the sense that they can be
defined as enriched categories over the category of the ordinals.

@ Results for R,,, valued fields, and real differentiable fields will likely
follow, and likely correspond to A and k numbers that were omitted
from this talk.
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Simplicity

Proposition

(No, <2) is a separative partial order under reverse inclusion.

Proof.

It is immediate that No is partially ordered by <, and so No will also be
partially ordered by the opposite <, with top element 0.

Now suppose a, b € No have tree rank «, 3 respectively and are such that
a £ b. Then b[Z a, and so either a C b or a_Lb.

If a C b, then there is some x € {—,+} such that a ~ x C b. Let y = —x
(i.e. =— =+ and =+ = —), and consider c =a ~ y. Then a C c, hence
¢ <2 aand clb as desired. If aLb, then we may take a = c. O]

v
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