
Foundations for the Analysis of Surreal-valued
genetic functions

AMS Special Section for Topics in Model Theory

Alexander Berenbeim

March 25th, 2022



Outline

1 Background
Background
Partizan Games -> Cuts -> Numbers

2 Genetic Functions and their Complexity
Genetic Functions
Pseudo-absolute values
Veblen Hierarchy Begets Veblen Rank

3 Examples of Veblen Rank (And What’s Up with the
Log-atomics)

Examples
Results



Background and Motivation

Foundations: We start by using NBG, since we want to reason
about differences between Classes and Sets, and quantify over
sets, but in practice we can really use ZFC (or ZF + DGC).
Analysis: following Sikorski, the sequences are On-length
sequences
Surreal-valued genetic functions: will take the rest of the talk
to describe
Motivation: van den Dries and Ehrlich showed in 2001 that
truncating the binary tree of surreal numbers No at heights of
εγ yields natural models of Rexp, in turn establish the surreal
numbers as a universal object.
Two languages to consider L = 〈<〉 ∪G and Ls = 〈<,<s〉 ∪G.
Want to use facts about the reducts of structures of Ls to L.



Partizan Games and Disjunctive Game Compounds

A combinatorial game G is a two player game, with players
conventionally called Left and Right, who play alternately, and
whose moves affect the position of the game according to
rules.
Games are partizan whenever these rules distinguish available
moves to Left and Right players. Otherwise they are impartial
If G and H are combinatorial games, H is a Left option of G
whenever Left can move from G to H. Let LG denote the set
of all available direct moves for Left (and similarly RG . Let GL

denote a generic Left move (and similarly GR).
We can form new games using the recursive disjunctive
compound

G + H =
{
G + HL,GL + H

}∣∣∣ {G + HR ,GR + H
}
.



Fundamental Examples

(Endgame) 0 ≡ {}| {}
(Pos) 1 ≡ {0}| {}
(Neg) −1 ≡ {}| {0}
(Fuz) ∗ ≡ {0}| {0}



Numbers, Cuts, and Games

Given an ordered space (X , <), a Conway cut (L|R) of X
arises when L ∪ R ⊂ X and L < R .
A Cuesta-Dutari cut is a Conway cut that partitions the
ordered space X .
The canonical realization of a Conway cut is denoted by L|R ,
i.e. the minimal set rank number c satisfying L < c < R .
We can build up a lexicographically, partially well-ordered
binary tree such that each level is a canonical realization of the
cuts of the level below (modulo details of the limit case).
We can think of | as a mapping from the Class of Conway cuts
C to the Class of the surreal numbers, sending cuts (F ,G ) to
the unique minimal set-theoretic ranked number c such that
F < c < G and for all x such that F < x < G , we have
c ≤s x .



Numbers and functions

Surreal numbers are linearly ordered and definable wrt a
canonical, genetic construction, with well-definedness as a
consequence of the unique minimal realization of the cut
generated by the predecessors sets ao = La ∪ Ra

This genetic construction carries over via transfinite induction
to define polynomials, and ultimately surreal-valued genetic
functions
These include numerous functions of interest to model
theorists, such as exp and ω, as well as log and the λ function
that identifies log-atomic numbers
Importantly, each number has a corresponding sign sequence,
indicating its lexicographical ordering and its complexity (we’ll
return to this later)



Motivating Genetic Functions (and the research)

The disjunctive game compound + is an order-preserving
abelian group operation.
We can recursively define a suitable notion of multiplication on
the numbers by

ab = {aLb + abL − aLbL, aRb + abR − aRbR}|

{aLb + abR − aLbR , aRb + abL − aRbL}.

This is another example of a recursively definable function with
the uniformity propery (a la Gonshor)
Functions are well-defined with respect to cofinality on the
option sets



Adjoining New Function Symbols

Let v ,w denote indeterminates, and let f : No→ No be a function
symbol, and suppose S is a set of genetic functions that have
already been defined. Then

1 We form the Ring K := No[{g(v), g(w) | g ∈ S ∪ {f }}],
where S is a set closed under composition consisting of
previously defined genetic functions on one variable.

2 We obtain a Class

S(v ,w) = {c1 + c2h(c3x + c4) : c1, c2, c3, c4 ∈ K , h ∈ S}.

3 We then form Ring R(v ,w) := No[S(v ,w)]PS
, where PS is

the cone of strictly positive polynomials with function from S .



Amendments to Rubinstein-Salzedo and Swaminathan

We want to choose sets Lf (v ,w) and Rf (v ,w) from R(v ,w) such
that the order condition and cofinality condition will hold:

Fix an x ∈ No, and suppose f (y) has already been defined for
all y ∈ Lx ∪ Rx , substitute v with xL and w with xR in
R(v ,w)

(Order Condition) all xL, xL
′ ∈ Lx and xR , xR

′ ∈ Rx , and
f L ∈ Lf (xL, xR) and f R ∈ Rf (xL

′
, xR

′
) we have f L(x) < f R(x),

and
(Cofinality Condition)

∀x , y , z ∈ No((y < x < z)→

Lf (y , z)[x ] < f (x) < Rf (y , z)[x ].

Once f is defined over No, we prove that the cofinality
condition holds, via (double) induction with respect to the
natural sum of the lengths of the arguments and generation.



Amendments to Rubinstein-Salzedo and Swaminathan

Finally, set

f (x) := {
⋃

xL ∈ Lx
xR ∈ Rx

{f L(x) : f L ∈ Lf (xL, xR)}}|

{
⋃

xL ∈ Lx
xR ∈ Rx

{f R(x) : f R ∈ Rf (xL, xR)}}



What this means in practice

Genetic functions are defined pointwise with respect to a Conway
cut whose Left and Right options are defined with respect to
substituting in the Left predecessors of x for u and the Right
predecessors of x for v .

However, a cofinality condition must hold, and so sets must form a
generic cut in the sense that for all y < x < z we can substitute in
y/u and z/v so that f L(x ; y , z) < f R(x ; y , z) as f L and f R vary.

These sets have a fixed order type corresponding to the terms
formed in the polynomial ring R(u, v) localized at the positive cone
PS , although in practice, these size of these sets grows with the
complexity of the argument.

The base case of each function is always defined by the constants
appearing in the Left and Right option sets, and the application of
previously defined genetic functions at 0.

When analyzing the complexity, we can induct on the complexity of
our term sets and use pseudo-absolute values to bound our
functions.



Example: exp and ω

Let [x ]n =
∑
i≤n

1
i!x

i .

Gonshor records Kruskals genetic definition of exp (p145 of
Gonshor):

exp(x) = {0, exp(xL)[x − xL]n, exp(xR)[x − xR ]2n+1}

{ 1
[xR − x ]n

exp(xR),
1

[xL − x ]2n+1
exp(xL)}

Following Conway, we can define ω:

ω(x) =
{
0, nω(xL)

}∣∣∣{ 1
2n
ω(xR)

}
which agrees with the ordinal valued ω function when restricted to
ordinals.



Pseudo-absolute values

Let ς : S1 → S2 be a map between two semi-rings. We say ς is a
pseudo-absolute value if the following holds:

1 ς(x) = 0 ⇐⇒ x = 0;
2 ς(xy) ≤ ς(x)ς(y);
3 ς(x + y) ≤ ς(x) + ς(y)

(Returning to motivation) We know that
ι(a + b) ≤ ι(a) + ι(b), but no proof for ι(ab) ≤ ι(a)ι(b) exists
(van den Dries-Ehrlich 2001) ι(ab)≤ ω[ι(a)]2[ι(b)]2



Defining
√

Let α1, α2 ∈ On have Cantor normal form
∑
j∈ni

ωαi,j for i = 1, 2.

Then say α1 ∼Γ α2 if and only if α1,0 = α2,0.
∼Γ is an equivalence relation put on ordinals which extend to
surreal number a via the equivalence Class [ιa]∼Γ

.
Each of these equivalence Classes has a simplest
non-negative/ordinal element.
The simplest element is the Γ-ordinal ωα such that ωα ∼Γ ιa.
We denote this simplest element by

√
ιa, and for general

α ∈ On, by
√
α.

We can extend this equivalence relation to all No by collapsing
the Levels of No, so in turn, the simplest element of [ιa]∼Γ

is
also the minimal non-negative element of [a]∼Γ

.
√

is a Class function from the Class of ordinals to the Class of
Γ-ordinals.



Veblen hierarchy

A normal ordinal valued function ϕ0 is any continuous (with
respect to the order topology) strictly increasing ordinal valued
function.
Given a normal function ϕ0, the Veblen functions with respect
to ϕ0 are the sequence of functions 〈ϕα : α ∈ On〉 such that
each ϕα enumerates the common fixed points of ϕβ for every
β ∈ α.
The Veblen hierarchy is the Class of functions 〈ϕα : α ∈ On〉
generated by ϕ0(x) = ωx .
Finally, we have the following ordering on the Veblen hierarchy:

ϕα(β) < ϕγ(δ) ⇐⇒

(α = γ∧β < δ)∨(α < γ∧β < ϕγ(δ))∨(α > γ∧ϕα(β) < δ))



Veblen hierarchy (ctd)

Recall
ω(x) =

{
0, ω(xL)n

}∣∣∣ {ω(xR)2−n
}

and

ε(x) =
{
0, ω(n)(0), ω(n)(ε(xL) + 1)

}∣∣∣ {ω(n)(ε(xR)− 1)
}

+ Because ω is a genetic function, it is immediate that every
Veblen function is a genetic function

In fact, we could show that the construction of g in GFPT
given ϕ0(x) = ω(x) is equicofinal with the construction of
ε(x).
Our primary motivation here is to identify for every g ∈ G , the
least α such that for all γ ∈ On, if x ∈ No(γ) then
g(x) ∈ No(ϕα(γ)).



Gonshor Fixed Point Theorem

Theorem (Gonshor Fixed Point)

Suppose f : No → No satisfies the following properties:

1 For all a ∈ No, f (a) is a power of ω;

2 a < b ⇒ f (a) < f (b);

3 There are two fixed sets C and D such that whenever a = G |H where G
contains no maximum and H contains no minimum, then
f (a) = (C ∪ f (G))|(D ∪ f (H)).

Then the function g defined by

g(b) :=
{
f (n)(C), f (n)(2g(bL))

}∣∣∣{f (n)(D), f (n)(
1
2
g(bR))

}
is onto the set of all fixed points of f and satisfies the above hypotheses with
respect to the sets f (n)(C) and f (n)(D), where f (n) denotes the nth iterate of f .
Furthermore, there is a On-length family of functions fα satisfying all three
conditions, such that f0 = f and for α > 0, fα is onto the set of all common
fixed points of fβ for β ∈ α and satisfies condition (iii) with respect to the sets
h(C) and h(D) where h runs through all finite compositions of fβ for β ∈ α.



Partial Veblen Rank

We inductively define the notion of partial Veblen rank as follows:
Fix γ ∈ On, VR(g , γ) is defined as follows:

VR(g , γ) ≥ 0;
VR(g , γ) ≥ λ for limit ordinals λ if and only if VR(g , γ) ≥ β
for all β ∈ λ;
VR(g , γ) ≥ α + 1 if and only if there is an x ∈ No(εγ) such
that

√
g(x) ≥ ϕα+1(γ).



Full Veblen Rank

We say VR(g , γ) = α whenever VR(g , γ) ≥ α and
VR(g , γ) 6≥ α + 1, i.e. α is the least ordinal such that for all
x ∈ No(ϕ1(γ)), g(x) ∈ No(ϕα+1(γ)).

We then define the Veblen rank of g by VR(g) :=
⋃

γ∈On
VR(g , γ).

We can extend this definition to g : Non → No by noting that ι(x̄)
is the Hessenberg sum of the lengths of the components, so we can
interpret Non(εγ) as the initial subset of Non consisting of n-tuples
of branches whose Hessenberg sum is less than εγ .

Whenever VR(g) ≥ α for all α ∈ On, rather than denote this by
saying the rank is ∞, we indicate this by saying the rank is On.

As an aside, we can extend the notion of Veblen rank from entire
genetic functions, to those that are defined on convex intervals of
surreal numbers, like all positive surreal numbers in the case of log.



Main Theorem

Theorem (Main Theorem (B., ’21))

Every genetic function g has Veblen rank in On, i.e.
∃γ ∈ On∀β ∈ On(γ ∈ β ⇒ VR(g , β) ≤ VR(g , γ).

This proof is built on the following:

Lemma (B, ’21)

For all surreal-valued genetic functions f , g ,
VR(f + g) ≤ max{VR(f ),VR(g)}
VR(fg) ≤ max{VR(f ),VR(g)}
VR(f ◦ g) ≤ max{VR(f ),VR(g)}
For a set S of genetic functions, and any term t generated by
Loring ∪ S ,

VR(tn) ≤ VR(t) ≤ sup{VR(g) : g ∈ S}



Examples

The following have zero Veblen rank:
Identity
Addition
Negation
Multiplication
exp

ω

log

Additionally, each Veblen function ϕα(x) has Veblen rank α (B,
’21)



VR(κ) = 1 (B., ’21)

The κ numbers are the simplest elements in their respective
exp-log class.
The genetic definition is given by

κ(x) :=
{

exp(n)(0), exp(n)(κ(xL))
}∣∣∣ {log(n)(κ(xR))

}
One can check that κ(1) = ε0 = ϕ1(0), and so we have a
witness to VR(κ) ≥ 1.
One checks by induction that VR(κ, γ) ≤ 1 on all γ, while
using some bounds on the complexity of exp and log
established by van den Dries and Ehrlich.
In particular, one checks for all x ∈ No(εγ) that√

(κ(x)) < ϕ2(γ), which follows using the aforementioned
inequalities to show that

√
(κ(x)) ≤ ϕ1(ιx) < ϕ1(ϕ1(γ)) < ϕ2(γ)



VR(λ) = 1 (B., ’21)

Definition

Let a ∈ No>0
>0, i.e. a is a positive infinite surreal number. We say a

is log-atomic if for all n ∈ N, there is a bn ∈ No such that for the
n-fold iterate of log we have

log(n)(a) = ωbn .

We denote the class of log-atomic numbers by L.

Then defining

λ(x) =
{
m, exp(n)(n · log(n) λ(xL)

}∣∣∣{exp(n)

(
1
m

log(n) λ(xR)

)}
one sees the λ numbers correspond to the log-atomic numbers
following applications of the aforementioned inequalities in the
previous slide, we also establish that VR(λ) = 1.



Questions and Future directions

Can similar work be done for characteristic p cases? p-adic
cases?
Generalizing work on homogeneous and model-complete
theories? (when are we guaranteed to get initial embeddings)
What about realization in exotic set theories?



Thank You

THANK YOU!
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