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Quick Intro

Surreal numbers can be inductively defined as games LR such
that L < R (otherwise the game is fuzzy)

The surreal numbers are inductively defined as maps $a:α→
2$
An order on a < b is inductively defined where a < b if
a(α) < b(α) for the least ordinal such that a and b disagree
For example, ( + - ) < ( + ) < ( + + )
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Fundamental Existence Theorem

Given L < R , there is a c of minimal length such that
L < c < R , i.e. c is an initial segment of all $L<d<R$

It suffices to prove this wrt the initial segment property in 4
separate cases
Case 1:L = R = ∅ then 0 works.
Case 2: L 6= ∅ and R = ∅. Take α to be the least ordinal such
that ∀a ∈ L there is some β ∈ α such that a(β) = −, i.e.
α 6= 0.Break into two subcases.c = α sequence of plusses if α
is a limit ordinal$ and c = α + 1 otherwise.
Case 3: symmetric to Case 2
Case 4: L,R 6= ∅. Take α as before. Break into two cases
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FET Case 4 Subcase 1

If α is a limit ordinal, we find that for each γ ∈ α that there
are some a, b agreeing for all β ∈ γ + 1.

We find that a(β) = b(β) = d(β) for all β ∈ γ + 1 ∈ α. If d
is not an initial segment of any a ∈ L or b ∈ G by hypothesis
so that a < d < b, and d works.
Otherwise if some a ∈ L has d as an initial segment, then R
does not have such elements.Let Ld be the set of tails wrt d in
L, and then apply case 2 to find d ′.
Set c = d _ d ′, and we see that L < c .
For any other L < e < R , e(β) = d(β) for all β ∈ α by
lexicographical ordering, so d is an initial segment of e, and
also by lexicographical ordering d ′ is an inital segment of e ′.
A similar argument is run if R has elements with initial
segment d
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FET Case 4 Subcase 2

If α is a successor to γ then we have a ∈ L and b ∈ R such
that a, b agree for all β ∈ γ and no a ∈ L, b ∈ R agree on all
of γ + 1.

We obtain a sequence d of length γ such that L < d < R and
if d is not an inital segment of a, then a < d , and similarly for
b.
Let Ld be the set of tails wrt d in L, similarly for Gd .Since
Ld < Rd , a(0) < b(0) as there cannot be (a, b) ∈ Ld × Rd

such that a(0) = b(0).
Since L ∩ R = ∅, d can only belong to at most one.If d ∈ R ,
then every a ∈ Ld satisfies a(0) = − and with Ld∗ the set of
tails with respect to this -, we then apply case to Ld∗ and the
empty set to obtain d ′, and then c = d _ (−) _ d ′ .
A similar argument works for d ∈ L.
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Consequences for ordering on

If R = ∅, then c = LR consists of plusses; if L = ∅, then
c = LR consists of minuses.

`(LR) is less than or equal to the least α such that for all
surreal numbers a, $a∈ L∪ R⇒ `(a)<α$
Any a of length α can be expressed by a form LR where all
b ∈ L ∪ R have length less than α.
If c = LR and d = FG then c ≤ d if and only if c < G and
L < d .The forward direction is straightforward. In the converse
direction, if c < G and L < d , towards a contradiction
suppose that d < c .Then L < d < c < R and thus c is an
initial segment of d and F < d < c < G so d is an initial
segment of c and thus c = d .
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If c = LR and d = FG then c ≤ d if and only if c < G and
L < d .The forward direction is straightforward. In the converse
direction, if c < G and L < d , towards a contradiction
suppose that d < c .

Then L < d < c < R and thus c is an
initial segment of d and F < d < c < G so d is an initial
segment of c and thus c = d .
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Cofinality

(F ,G ) is cofinal in (L,R) if for all a ∈ L there is an a′ ∈ F
such that a ≤ b and for all b ∈ R there is a b′ ∈ G such that
b ≤ a.

(Theorem 1) If a = LR , F < a < G and (F ,G ) is cofinal in
(L,R) then a = FG .To see this, towards a contradiction
suppose `(b) < `(a) and F < b < G , then by cofinality
L < b < R , contradicting the miniamlity of a.
(Theorem 2) If (L,R) and (F ,G ) are mutually cofinal in each
other, then LR = FG .This follows because both pairs define
the same element of minimal length.
One immediate consequence of these theorems: for any a ∈, if
aL = {b | b < a ∧ b ⊂ a} and aR = {b | a < b ∧ b ⊂ a}, then
a = LR .This is the canonical representation of a.
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Inverse Cofinality

There’s a partial converse to these cofinality theorems.

(Inverse Cofinality) Let a = LR be the canonical representation
of a, and also a = FG . Then (F ,G ) is cofinal in (L,R).
Suppose b ∈ L.Then b < a < G and by minimality, F < b is
impossible, since a is of minimal length such that F < x < G .
Armed with these results we can begin to define algebraic
operations.
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Addition

We define a + b = aL + b, a + bLaR + b, a + bR .

Since 0L = 0R = ∅,
a + 0 = aL + 0, a + 0LaR + 0, a + 0R = aL + 0aR + 0 = aLaR
by the induction hypothesis.
It’s a quick induction argument to show that a + b is always
defined, commutative, associative, order-preserving.
Inverses can be handled by reversing signs, so −a = −aR−aL.
So is an ordered abelian group.
(Uniformity) For any representations a = LR, b = FG ,
a + b = l + b, a + f r + b, a + g . This follows by inverse
cofinality where L is cofinal in aL, and so on for the other sets.
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Multiplication

Define ab =
aLb + abL − aLbL, aRb + abR − aRbRaLb + abR − aLbR , aRb + abL − aRbL

By induction on the natural sum of the lengths of each of the
factors we find that ab is always defined and for a > b and
c > d that ac − bc > ad − bd .(Specifically, let P(a,b,c,d)
denote the inequality ac − bc > ad − bd , find that P is
transitive, and induct on the proper initial segments)
To show distributivity and associativity, use induction on
`(a) + `(b) + `(c)

We see a · 1 = aL · 1 + a · 0− aL · 0aR · 1 + a · 0− aR · 0 =
aL · 1aR · 1 = aLaR = a

Suppose a > 0, b > 0, then P(a, 0, b, 0) follows, ie ab > 0.
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Multiplicative Inverses

Define 〈a1, . . . an〉 where ai ∈ aL ∪ aR\{0}.

Define b ◦ ai as the unique solution of (a− ai )b + aix = 1
(which exist by inductive hypothesis guaranteeing that ai as an
initial segment of a has an inverse).
So 〈〉 = 0 and 〈a1, . . . , an, an+1〉 = 〈a1, . . . , an〉 ◦ an+1.
Set L = {〈a1, . . . , an〉 | the number of ai ∈ aL is even } and
similarly define R as the set of 〈a1, . . . , an〉 where the number
of ai ∈ aL is odd.
a−1 := LR

Alexander Berenbeim Introduction to the Surreal Numbers



Defining Surreal Numbers
Cofinality Theorems

Operations
Gaps

Multiplicative Inverses

Define 〈a1, . . . an〉 where ai ∈ aL ∪ aR\{0}.
Define b ◦ ai as the unique solution of (a− ai )b + aix = 1
(which exist by inductive hypothesis guaranteeing that ai as an
initial segment of a has an inverse).

So 〈〉 = 0 and 〈a1, . . . , an, an+1〉 = 〈a1, . . . , an〉 ◦ an+1.
Set L = {〈a1, . . . , an〉 | the number of ai ∈ aL is even } and
similarly define R as the set of 〈a1, . . . , an〉 where the number
of ai ∈ aL is odd.
a−1 := LR

Alexander Berenbeim Introduction to the Surreal Numbers



Defining Surreal Numbers
Cofinality Theorems

Operations
Gaps

Multiplicative Inverses

Define 〈a1, . . . an〉 where ai ∈ aL ∪ aR\{0}.
Define b ◦ ai as the unique solution of (a− ai )b + aix = 1
(which exist by inductive hypothesis guaranteeing that ai as an
initial segment of a has an inverse).
So 〈〉 = 0 and 〈a1, . . . , an, an+1〉 = 〈a1, . . . , an〉 ◦ an+1.

Set L = {〈a1, . . . , an〉 | the number of ai ∈ aL is even } and
similarly define R as the set of 〈a1, . . . , an〉 where the number
of ai ∈ aL is odd.
a−1 := LR

Alexander Berenbeim Introduction to the Surreal Numbers



Defining Surreal Numbers
Cofinality Theorems

Operations
Gaps

Multiplicative Inverses

Define 〈a1, . . . an〉 where ai ∈ aL ∪ aR\{0}.
Define b ◦ ai as the unique solution of (a− ai )b + aix = 1
(which exist by inductive hypothesis guaranteeing that ai as an
initial segment of a has an inverse).
So 〈〉 = 0 and 〈a1, . . . , an, an+1〉 = 〈a1, . . . , an〉 ◦ an+1.
Set L = {〈a1, . . . , an〉 | the number of ai ∈ aL is even } and
similarly define R as the set of 〈a1, . . . , an〉 where the number
of ai ∈ aL is odd.

a−1 := LR

Alexander Berenbeim Introduction to the Surreal Numbers



Defining Surreal Numbers
Cofinality Theorems

Operations
Gaps

Multiplicative Inverses

Define 〈a1, . . . an〉 where ai ∈ aL ∪ aR\{0}.
Define b ◦ ai as the unique solution of (a− ai )b + aix = 1
(which exist by inductive hypothesis guaranteeing that ai as an
initial segment of a has an inverse).
So 〈〉 = 0 and 〈a1, . . . , an, an+1〉 = 〈a1, . . . , an〉 ◦ an+1.
Set L = {〈a1, . . . , an〉 | the number of ai ∈ aL is even } and
similarly define R as the set of 〈a1, . . . , an〉 where the number
of ai ∈ aL is odd.
a−1 := LR

Alexander Berenbeim Introduction to the Surreal Numbers



Defining Surreal Numbers
Cofinality Theorems

Operations
Gaps

The ω map, map, and Cantor Normal Form

$ ω(a) :={0,ωaL}{ωaR}$.

We inductively define ωn(a) as follows: ω1(a) = ω(a) and
ωn+1(a) = ω(ωn(a)).
We inductively define (a) as follows: Given a = aLaR , then
(a) : ωn(1), ωn((aL + 1))ωn((bR − 1))

So (0) = ωn(1)∅ = l.u.b.n∈ω{ωn(1) | n ∈ ω} =0.
Every surreal number can be uniquely expressed in the form∑
i∈α

ωai ri .

As an immediate consequence, every surreal number
a = ωa0r0(1 + η), where η is an infinitesimal.
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Defining exp

Gonshor uniformly defined an exponential operation on via

exp(a) = {0, (exp aL)[a− aL]n, (exp aR)[a− aR ]2n+1}

{
exp(aR)

[aR − a]n
,

exp aL

[aL − a]2n+1
}

where [a]n is the partial series expansion up to n.

exp has all the desired properties.
exp(a) is a power of ω for all purely infinite numbers, so for all
a ∈ there is a canonical representation of exp a such that if a
is not strictly finite then

exp a = ωω
b
er

where r is the finite part of a and ωω
b
corresponds to the

infinite part of a.
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Defining log

We define the natural log for our ω powers

ln(ωb) := ln(ωbL) + n, ln(ωbR )− ω
bR−b

n ln(ωbR )− n, ln(ωbL) + ω
b−bl
n

with n running through all natural numbers.

A sanity check: Consider
ln(ω) = ln(ω1).Then

ln(ω) = ln(ω0) + nln(ω0) + (ω1)1/n = nω1/n = ω1/ω

For all a ∈ sur , log(ωω
a
) is a power of ω.

The connection between exp and log are related to functions
denoted g and h relating the infinite powers of ω.
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On, Off, and ∞

The class of surreal numbers is a totally disconnected when
using the standard notion of open intervals.

A gap between two surreal numbers is defined wrt two classes
L,R such that if there is no a ∈ L and b ∈ R such that a ≥ b,
i.e we represent gaps by games LR .
While ⊂, is properly a gap itself, namely = ∅
Cheekily, Off = ∅.
∞ is the gap where L is the class of all finite positive and all
negative numbers, and R is the class of all infinite numbers.
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Types of Gaps and a topology
Gaps come in two types with the following normal forms:

(I )
∑
i∈
ωyi ri

(II )
∑
i∈α

ωyi ri ⊕ (±ωΘ)

where Θ is a gap whose right class contains all yi ,
n ⊕ g = n + gLn + gR , and ωΘ = 0, ωlaωrb with a, b ∈>0 and
l ∈ ΘL and r ∈ ΘR .

We topologize with a collection of subclasses A such that:
(1) ∅,∈ A; (2) (

⋃
i∈I

Ai ) ∈ A for any subcollection of Ai

indexed by a proper set; (3)
⋂
i∈I

Ai indexed by a finite set I.

So an interval of is open if it has endpoints in ∪{,Off} and it
does not contain it’s own endpoints.
(Off,∞) is an open interval by (∞, ) is not.
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