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Quick Intro

@ Surreal numbers can be inductively defined as games LR such
that L < R (otherwise the game is fuzzy)
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Quick Intro

@ Surreal numbers can be inductively defined as games LR such
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@ An order on a < b is inductively defined where a < b if
a(a) < b(«) for the least ordinal such that a and b disagree

@ Forexample, (+-)<(+)<(++)
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Quick Intro

@ Surreal numbers can be inductively defined as games LR such
that L < R (otherwise the game is fuzzy)

@ The surreal numbers are inductively defined as maps $a:ac —
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@ An order on a < b is inductively defined where a < b if
a(a) < b(«) for the least ordinal such that a and b disagree

o For example, (+-)<(+)<(++)
e Fundamental Existence Theorem and Cofinality Theorems
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Defining Surreal Numbers

Quick Intro

@ Surreal numbers can be inductively defined as games LR such
that L < R (otherwise the game is fuzzy)

@ The surreal numbers are inductively defined as maps $a:ac —

2%

@ An order on a < b is inductively defined where a < b if
a(a) < b(«) for the least ordinal such that a and b disagree

o For example, (+-)<(+)<(++)
e Fundamental Existence Theorem and Cofinality Theorems

@ Operations, Limits, and Gaps
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Defining Surreal Numbers

Fundamental Existence Theorem

e Given L < R, there is a ¢ of minimal length such that
L < c < R,ie. cisan initial segment of all $L<d<R$
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Defining Surreal Numbers

Fundamental Existence Theorem

e Given L < R, there is a ¢ of minimal length such that
L < c < R,ie. cisan initial segment of all $L<d<R$

o It suffices to prove this wrt the initial segment property in 4
separate cases
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Fundamental Existence Theorem

e Given L < R, there is a ¢ of minimal length such that
L < c < R,ie. cisan initial segment of all $L<d<R$

o It suffices to prove this wrt the initial segment property in 4
separate cases

o Case 1:L = R = () then 0 works.
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Fundamental Existence Theorem

e Given L < R, there is a ¢ of minimal length such that
L < c < R,ie. cisan initial segment of all $L<d<R$

o It suffices to prove this wrt the initial segment property in 4
separate cases

o Case 1:L = R = () then 0 works.

o Case 2: L# () and R = (). Take « to be the least ordinal such
that Va € L there is some 8 € a such that a(8) = —, i.e.

a# 0.
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Defining Surreal Numbers

Fundamental Existence Theorem

e Given L < R, there is a ¢ of minimal length such that
L < c < R,ie. cisan initial segment of all $L<d<R$

o It suffices to prove this wrt the initial segment property in 4
separate cases

@ Case 1:L = R = () then 0 works.

o Case 2: L# () and R = (). Take « to be the least ordinal such

that Va € L there is some 8 € a such that a(8) = —, i.e.
a # 0.Break into two subcases.
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Defining Surreal Numbers

Fundamental Existence Theorem

e Given L < R, there is a ¢ of minimal length such that
L < c < R,ie. cisan initial segment of all $L<d<R$

o It suffices to prove this wrt the initial segment property in 4
separate cases

o Case 1:L = R = () then 0 works.

o Case 2: L# () and R = (). Take « to be the least ordinal such
that Va € L there is some 8 € a such that a(8) = —, i.e.
a # 0.Break into two subcases.c = « sequence of plusses if «
is a limit ordinal$ and ¢ = o + 1 otherwise.
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Defining Surreal Numbers

Fundamental Existence Theorem

e Given L < R, there is a ¢ of minimal length such that
L < c < R,ie. cisan initial segment of all $L<d<R$

o It suffices to prove this wrt the initial segment property in 4
separate cases

@ Case 1:L = R = () then 0 works.

o Case 2: L# () and R = (). Take « to be the least ordinal such
that Va € L there is some 8 € a such that a(8) = —, i.e.
a # 0.Break into two subcases.c = « sequence of plusses if «
is a limit ordinal$ and ¢ = o + 1 otherwise.

@ Case 3: symmetric to Case 2
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Defining Surreal Numbers

Fundamental Existence Theorem

e Given L < R, there is a ¢ of minimal length such that
L < c < R,ie. cisan initial segment of all $L<d<R$

o It suffices to prove this wrt the initial segment property in 4
separate cases

o Case 1:L = R = () then 0 works.

o Case 2: L# () and R = (). Take « to be the least ordinal such
that Va € L there is some 8 € a such that a(8) = —, i.e.
a # 0.Break into two subcases.c = « sequence of plusses if «
is a limit ordinal$ and ¢ = o + 1 otherwise.

@ Case 3: symmetric to Case 2

@ Case 4: L,R # (0. Take « as before. Break into two cases
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Defining Surreal Numbers

FET Case 4 Subcase 1

e If ais a limit ordinal, we find that for each « € « that there
are some a, b agreeing for all g € v + 1.
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Defining Surreal Numbers

FET Case 4 Subcase 1

e If ais a limit ordinal, we find that for each « € « that there
are some a, b agreeing for all g € v + 1.

e We find that a(8) = b(8) = d(5) forall ey +1€a. If d
is not an initial segment of any a € L or b € G by hypothesis
so that a < d < b, and d works.
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Defining Surreal Numbers

FET Case 4 Subcase 1

e If ais a limit ordinal, we find that for each « € « that there
are some a, b agreeing for all g € v + 1.

e We find that a(8) = b(8) = d(5) forall ey +1€a. If d
is not an initial segment of any a € L or b € G by hypothesis
so that a < d < b, and d works.

@ Otherwise if some a € L has d as an initial segment, then R
does not have such elements.

Alexander Berenbeim Introduction to the Surreal Numbers



Defining Surreal Numbers

FET Case 4 Subcase 1

e If ais a limit ordinal, we find that for each « € « that there
are some a, b agreeing for all g € v + 1.

e We find that a(8) = b(8) = d(5) forall ey +1€a. If d
is not an initial segment of any a € L or b € G by hypothesis
so that a < d < b, and d works.

@ Otherwise if some a € L has d as an initial segment, then R
does not have such elements.Let Ly be the set of tails wrt d in
L, and then apply case 2 to find d’.
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FET Case 4 Subcase 1

e If ais a limit ordinal, we find that for each « € « that there
are some a, b agreeing for all g € v + 1.

e We find that a(8) = b(8) = d(5) forall ey +1€a. If d
is not an initial segment of any a € L or b € G by hypothesis
so that a < d < b, and d works.

@ Otherwise if some a € L has d as an initial segment, then R
does not have such elements.Let Ly be the set of tails wrt d in
L, and then apply case 2 to find d’.

@ Set c =d —~ d’, and we see that L < c.
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Defining Surreal Numbers

FET Case 4 Subcase 1

e If ais a limit ordinal, we find that for each « € « that there
are some a, b agreeing for all g € v + 1.

e We find that a(8) = b(8) = d(5) forall ey +1€a. If d
is not an initial segment of any a € L or b € G by hypothesis
so that a < d < b, and d works.

@ Otherwise if some a € L has d as an initial segment, then R
does not have such elements.Let Ly be the set of tails wrt d in
L, and then apply case 2 to find d’.

@ Set c =d —~ d’, and we see that L < c.

e For any other L < e < R, e(f) = d(p) for all 5 € a by
lexicographical ordering, so d is an initial segment of e, and
also by lexicographical ordering d’ is an inital segment of €'.

Alexander Berenbeim Introduction to the Surreal Numbers



Defining Surreal Numbers

FET Case 4 Subcase 1

e If ais a limit ordinal, we find that for each « € « that there
are some a, b agreeing for all g € v + 1.

e We find that a(8) = b(8) = d(5) forall ey +1€a. If d
is not an initial segment of any a € L or b € G by hypothesis
so that a < d < b, and d works.

@ Otherwise if some a € L has d as an initial segment, then R
does not have such elements.Let Ly be the set of tails wrt d in
L, and then apply case 2 to find d’.

@ Set c =d —~ d’, and we see that L < c.

e For any other L < e < R, e(f) = d(p) for all 5 € a by
lexicographical ordering, so d is an initial segment of e, and
also by lexicographical ordering d’ is an inital segment of €'.

@ A similar argument is run if R has elements with initial
segment d
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Defining Surreal Numbers

FET Case 4 Subcase 2

@ If o is a successor to y then we have a € L and b € R such
that a, b agree for all 35 € vy and no a€ L, b € R agree on all
of v+ 1.
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Defining Surreal Numbers

FET Case 4 Subcase 2

@ If o is a successor to y then we have a € L and b € R such
that a, b agree for all 35 € vy and no a€ L, b € R agree on all
of v+ 1.

@ We obtain a sequence d of length + such that L < d < R and
if d is not an inital segment of a, then a < d, and similarly for

b.
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Defining Surreal Numbers

FET Case 4 Subcase 2

@ If o is a successor to y then we have a € L and b € R such
that a, b agree for all 35 € vy and no a€ L, b € R agree on all
of v+ 1.

@ We obtain a sequence d of length + such that L < d < R and
if d is not an inital segment of a, then a < d, and similarly for

b.
o Let Ly be the set of tails wrt d in L, similarly for G.
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Defining Surreal Numbers

FET Case 4 Subcase 2

@ If o is a successor to y then we have a € L and b € R such
that a, b agree for all 35 € vy and no a€ L, b € R agree on all
of v+ 1.

@ We obtain a sequence d of length + such that L < d < R and
if d is not an inital segment of a, then a < d, and similarly for
b.

o Let Ly be the set of tails wrt d in L, similarly for G4.Since
Ly < Ry, a(0) < b(0) as there cannot be (a,b) € Ly X Ry
such that a(0) = b(0).
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Defining Surreal Numbers

FET Case 4 Subcase 2

@ If o is a successor to y then we have a € L and b € R such
that a, b agree for all 35 € vy and no a€ L, b € R agree on all
of v+ 1.

@ We obtain a sequence d of length + such that L < d < R and
if d is not an inital segment of a, then a < d, and similarly for
b.

o Let Ly be the set of tails wrt d in L, similarly for G4.Since
Ly < Ry, a(0) < b(0) as there cannot be (a,b) € Ly X Ry
such that a(0) = b(0).

@ Since LN R =0, d can only belong to at most one.
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Defining Surreal Numbers

FET Case 4 Subcase 2

@ If o is a successor to y then we have a € L and b € R such
that a, b agree for all 35 € vy and no a€ L, b € R agree on all
of v+ 1.

@ We obtain a sequence d of length + such that L < d < R and
if d is not an inital segment of a, then a < d, and similarly for

b.

o Let Ly be the set of tails wrt d in L, similarly for G4.Since
Ly < Ry, a(0) < b(0) as there cannot be (a,b) € Ly X Ry
such that a(0) = b(0).

@ Since LN R = (), d can only belong to at most one.lf d € R,
then every a € Ly satisfies a(0) = — and with Ly, the set of
tails with respect to this -, we then apply case to Ly, and the
empty set to obtain d’, and thenc=d ~ (=) ~ d’
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Defining Surreal Numbers

FET Case 4 Subcase 2

@ If o is a successor to y then we have a € L and b € R such
that a, b agree for all 35 € vy and no a€ L, b € R agree on all
of v+ 1.

@ We obtain a sequence d of length + such that L < d < R and
if d is not an inital segment of a, then a < d, and similarly for

b.

o Let Ly be the set of tails wrt d in L, similarly for G4.Since
Ly < Ry, a(0) < b(0) as there cannot be (a,b) € Ly X Ry
such that a(0) = b(0).

@ Since LN R = (), d can only belong to at most one.lf d € R,
then every a € Ly satisfies a(0) = — and with Ly, the set of
tails with respect to this -, we then apply case to Ly, and the
empty set to obtain d’, and thenc =d ~ (=) ~ d’ .

@ A similar argument works for d € L.
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Defining Surreal Numbers

Consequences for ordering on

o If R =10, then ¢ = LR consists of plusses; if L = (), then
¢ = LR consists of minuses.
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Consequences for ordering on

o If R =10, then ¢ = LR consists of plusses; if L = (), then
¢ = LR consists of minuses.

@ /(LR) is less than or equal to the least « such that for all
surreal numbers a, $ac LU R= /(a)<ad
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Defining Surreal Numbers

Consequences for ordering on

o If R =10, then ¢ = LR consists of plusses; if L = (), then
¢ = LR consists of minuses.

@ /(LR) is less than or equal to the least « such that for all
surreal numbers a, $ac LU R= /(a)<ad

@ Any a of length « can be expressed by a form LR where all
b € LU R have length less than «.

Alexander Berenbeim Introduction to the Surreal Numbers



Defining Surreal Numbers

Consequences for ordering on

o If R =10, then ¢ = LR consists of plusses; if L = (), then
¢ = LR consists of minuses.

@ /(LR) is less than or equal to the least « such that for all
surreal numbers a, $ac LU R= /(a)<ad

@ Any a of length « can be expressed by a form LR where all
b € LU R have length less than «.

o If c=LR and d = FG then ¢ < d if and only if c < G and
L<d.
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Defining Surreal Numbers

Consequences for ordering on

o If R =0, then c = LR consists of plusses; if L = 0, then
¢ = LR consists of minuses.

@ /(LR) is less than or equal to the least « such that for all
surreal numbers a, $ac LU R= /(a)<ad

@ Any a of length « can be expressed by a form LR where all
b € LU R have length less than «.

o If c=LR and d = FG then ¢ < d if and only if c < G and
L < d.The forward direction is straightforward. In the converse
direction, if ¢ < G and L < d, towards a contradiction
suppose that d < c.
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Defining Surreal Numbers

Consequences for ordering on

o If R =10, then ¢ = LR consists of plusses; if L = (), then
¢ = LR consists of minuses.

@ /(LR) is less than or equal to the least « such that for all
surreal numbers a, $ac LU R= /(a)<ad

@ Any a of length « can be expressed by a form LR where all
b € LU R have length less than «.

o If c=LR and d = FG then ¢ < d if and only if c < G and
L < d.The forward direction is straightforward. In the converse
direction, if ¢ < G and L < d, towards a contradiction
suppose that d < ¢.Then L < d < ¢ < R and thus c is an
initial segment of d and F < d < ¢ < G so d is an initial
segment of ¢ and thus ¢ = d.
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Cofinality Theorems

Cofinality

e (F,G)is cofinal in (L, R) if for all a € L there isan &’ € F
such that a < b and for all b € R there is a b’ € G such that
b<a.
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Cofinality Theorems

Cofinality

e (F,G) is cofinal in (L, R) if for all a € L thereis an a’ € F
such that a < b and for all b € R there is a b’ € G such that
b<a.

® (Theorem 1) If a= LR, F < a< G and (F, G) is cofinal in
(L, R) then a = FG.
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Cofinality Theorems

Cofinality

e (F,G) is cofinal in (L, R) if for all a € L thereis an a’ € F
such that a < b and for all b € R there is a b’ € G such that
b<a.

® (Theorem 1) If a= LR, F < a< G and (F, G) is cofinal in
(L, R) then a = FG.To see this, towards a contradiction
suppose {(b) < ¢(a) and F < b < G, then by cofinality
L < b < R, contradicting the miniamlity of a.
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Cofinality Theorems

Cofinality

e (F,G)is cofinal in (L, R) if for all a € L there isan &’ € F
such that a < b and for all b € R there is a b’ € G such that
b<a.

® (Theorem 1) If a= LR, F < a< G and (F, G) is cofinal in
(L, R) then a = FG.To see this, towards a contradiction
suppose {(b) < ¢(a) and F < b < G, then by cofinality
L < b < R, contradicting the miniamlity of a.

@ (Theorem 2) If (L, R) and (F, G) are mutually cofinal in each
other, then LR = FG.

Alexander Berenbeim Introduction to the Surreal Numbers



Cofinality Theorems

Cofinality

e (F,G) is cofinal in (L, R) if for all a € L thereis an a’ € F
such that a < b and for all b € R there is a b’ € G such that
b < a.

® (Theorem 1) If a= LR, F < a< G and (F, G) is cofinal in
(L, R) then a = FG.To see this, towards a contradiction
suppose {(b) < ¢(a) and F < b < G, then by cofinality
L < b < R, contradicting the miniamlity of a.

@ (Theorem 2) If (L, R) and (F, G) are mutually cofinal in each
other, then LR = FG.This follows because both pairs define
the same element of minimal length.
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Cofinality Theorems

Cofinality

e (F,G) is cofinal in (L, R) if for all a € L thereis an a’ € F
such that a < b and for all b € R there is a b’ € G such that
b<a.

® (Theorem 1) If a= LR, F < a< G and (F, G) is cofinal in
(L, R) then a = FG.To see this, towards a contradiction
suppose {(b) < ¢(a) and F < b < G, then by cofinality
L < b < R, contradicting the miniamlity of a.

@ (Theorem 2) If (L, R) and (F, G) are mutually cofinal in each
other, then LR = FG.This follows because both pairs define
the same element of minimal length.

e One immediate consequence of these theorems: for any a €, if
ap={b|b<anbcCalandagr={b|a<bAbcC a}, then
a=1LR.
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Cofinality Theorems

Cofinality

e (F,G) is cofinal in (L, R) if for all a € L thereis an a’ € F
such that a < b and for all b € R there is a b’ € G such that
b<a.

® (Theorem 1) If a= LR, F < a< G and (F, G) is cofinal in
(L, R) then a = FG.To see this, towards a contradiction
suppose {(b) < ¢(a) and F < b < G, then by cofinality
L < b < R, contradicting the miniamlity of a.

@ (Theorem 2) If (L, R) and (F, G) are mutually cofinal in each
other, then LR = FG.This follows because both pairs define
the same element of minimal length.

e One immediate consequence of these theorems: for any a €, if
ap={b|b<anbcCalandagr={b|a<bAbcC a}, then
a = LR.This is the canonical representation of a.
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Cofinality Theorems

Inverse Cofinality

@ There's a partial converse to these cofinality theorems.
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Cofinality Theorems

Inverse Cofinality

@ There's a partial converse to these cofinality theorems.

@ (Inverse Cofinality) Let a = LR be the canonical representation
of a, and also a = FG. Then (F, G) is cofinal in (L, R).
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Cofinality Theorems

Inverse Cofinality

@ There's a partial converse to these cofinality theorems.

@ (Inverse Cofinality) Let a = LR be the canonical representation
of a, and also a = FG. Then (F, G) is cofinal in (L, R).

@ Suppose b € L.
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Cofinality Theorems

Inverse Cofinality

@ There's a partial converse to these cofinality theorems.

@ (Inverse Cofinality) Let a = LR be the canonical representation
of a, and also a = FG. Then (F, G) is cofinal in (L, R).

@ Suppose b € L.Then b < a < G and by minimality, F < b is
impossible, since a is of minimal length such that F < x < G.
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Cofinality Theorems

Inverse Cofinality

@ There's a partial converse to these cofinality theorems.

@ (Inverse Cofinality) Let a = LR be the canonical representation
of a, and also a = FG. Then (F, G) is cofinal in (L, R).

@ Suppose b € L.Then b < a < G and by minimality, F < b is
impossible, since a is of minimal length such that F < x < G.

@ Armed with these results we can begin to define algebraic
operations.
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Operations

o Wedefinea+b=a, +b,a+ brar + b,a+ bg.
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Operations

o Wedefinea+b=a, +b,a+ brar + b,a+ bg.
@ Since 0, = 0g =0,

a+0=a, +0,a+0,ar+0,a+0r =a; +0ar +0=ajar
by the induction hypothesis.
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Operations

o Wedefinea+b=a, +b,a+ brar + b,a+ bg.

@ Since 0, = 0g =0,
a+0=a, +0,a+0,ar+0,a+0r =a; +0ar +0=ajar
by the induction hypothesis.

@ It's a quick induction argument to show that a + b is always
defined, commutative, associative, order-preserving.
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Operations

o Wedefinea+b=a, +b,a+ brar + b,a+ bg.

@ Since 0, = 0g =0,
a+0=a, +0,a+0,ar+0,a+0r =a; +0ar +0=ajar
by the induction hypothesis.

@ It's a quick induction argument to show that a + b is always
defined, commutative, associative, order-preserving.

@ Inverses can be handled by reversing signs, so —a = —ar—a;.
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Operations

o Wedefinea+b=a, +b,a+ brar + b,a+ bg.

@ Since 0, = 0g =0,
a+0=a, +0,a+0,ar+0,a+0r =a; +0ar +0=ajar
by the induction hypothesis.

@ It's a quick induction argument to show that a + b is always
defined, commutative, associative, order-preserving.

@ Inverses can be handled by reversing signs, so —a = —ar—a;.
@ So is an ordered abelian group.
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Operations

o Wedefinea+b=a, +b,a+ brar + b,a+ bg.

@ Since 0, = 0g =0,
a+0=a, +0,a+0,ar+0,a+0r =a; +0ar +0=ajar
by the induction hypothesis.

@ It's a quick induction argument to show that a + b is always
defined, commutative, associative, order-preserving.

@ Inverses can be handled by reversing signs, so —a = —ar—a;.
@ So is an ordered abelian group.

@ (Uniformity) For any representations a = LR, b = FG,
at+b=I/+bat+fr+ba+g.
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Operations

o Wedefinea+b=a, +b,a+ brar + b,a+ bg.

@ Since 0, = 0g =0,
a+0=a, +0,a+0,ar+0,a+0r =a; +0ar +0=ajar
by the induction hypothesis.

@ It's a quick induction argument to show that a + b is always
defined, commutative, associative, order-preserving.

@ Inverses can be handled by reversing signs, so —a = —ar—a;.
@ So is an ordered abelian group.

@ (Uniformity) For any representations a = LR, b = FG,
at+b=1I1+b,a+ fr+ b,a+ g. This follows by inverse
cofinality where L is cofinal in a;, and so on for the other sets.
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Operations

Multiplication

@ Define ab =
aib+ ab; —a;b;,arb+ abr — arbra b+ abr — a;br,arb + aby -
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Operations

Multiplication

@ Define ab =
aib+ ab; —a;b;,arb+ abr — arbra b+ abr — a;br,arb + aby -
@ By induction on the natural sum of the lengths of each of the
factors we find that ab is always defined and for a > b and
¢ > d that ac — bc > ad — bd.
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factors we find that ab is always defined and for a > b and
¢ > d that ac — bc > ad — bd.(Specifically, let P(a,b,c,d)
denote the inequality ac — bc > ad — bd, find that P is
transitive, and induct on the proper initial segments)

@ To show distributivity and associativity, use induction on
¢(a) + £(b) + ¢(c)

Alexander Berenbeim Introduction to the Surreal Numbers



Operations

Multiplication

@ Define ab =
aib+ ab; —a;b;,arb+ abr — arbra b+ abr — a;br,arb + aby -

@ By induction on the natural sum of the lengths of each of the
factors we find that ab is always defined and for a > b and
¢ > d that ac — bc > ad — bd.(Specifically, let P(a,b,c,d)
denote the inequality ac — bc > ad — bd, find that P is
transitive, and induct on the proper initial segments)

@ To show distributivity and associativity, use induction on
¢(a) + £(b) + ¢(c)

o Weseea-1=a,-1+a-0—a;-0ap-1+a-0—ar-0=
aj-lap-1=ajar = a
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Operations

Multiplication

@ Define ab =
aib+ ab; —a;b;,arb+ abr — arbra b+ abr — a;br,arb + aby -

@ By induction on the natural sum of the lengths of each of the
factors we find that ab is always defined and for a > b and
¢ > d that ac — bc > ad — bd.(Specifically, let P(a,b,c,d)
denote the inequality ac — bc > ad — bd, find that P is
transitive, and induct on the proper initial segments)

@ To show distributivity and associativity, use induction on
¢(a) + £(b) + ¢(c)

o Weseea-1=a,-1+a-0—a;-0ap-1+a-0—ar-0=
aj-lap-1=ajar = a

@ Suppose a > 0,b > 0, then P(a,0, b,0) follows, ie ab > 0.
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Operations

Multiplicative Inverses

@ Define (a1, ...a,) where a; € a; U ag\{0}.
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Multiplicative Inverses

@ Define (a1, ...a,) where a; € a; U ag\{0}.

@ Define b o a; as the unique solution of (a — a;)b+ ajx =1
(which exist by inductive hypothesis guaranteeing that a; as an
initial segment of a has an inverse).
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@ Define (a1, ...a,) where a; € a; U ag\{0}.

@ Define b o a; as the unique solution of (a — a;)b+ ajx =1
(which exist by inductive hypothesis guaranteeing that a; as an
initial segment of a has an inverse).

@ So () =0and (a1,...,an,ant+1) = (a1,-..,3n) © Ant+1-
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Operations

Multiplicative Inverses

@ Define (a1, ... a,) where a; € aj U ar\{0}.

@ Define b o a; as the unique solution of (a — a;)b+ ajx =1
(which exist by inductive hypothesis guaranteeing that a; as an
initial segment of a has an inverse).

@ So () =0and (a1,...,an,ant+1) = (a1,-..,3n) © Ant+1-
o Set L = {(a1,...,an) | the number of a; € a; is even } and
similarly define R as the set of (a1, ..., a,) where the number

of a; € a; is odd.
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Operations

Multiplicative Inverses

@ Define (a1, ... a,) where a; € aj U ar\{0}.

@ Define b o a; as the unique solution of (a — a;)b+ ajx =1
(which exist by inductive hypothesis guaranteeing that a; as an
initial segment of a has an inverse).

@ So () =0and (a1,...,an,ant+1) = (a1,-..,3n) © Ant+1-

o Set L = {(a1,...,an) | the number of a; € a; is even } and
similarly define R as the set of (a1, ..., a,) where the number
of a; € a; is odd.

e al:=ILR
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Operations

The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.
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The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.

e We inductively define w,(a) as follows: wi(a) = w(a)
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Operations

The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.
e We inductively define w,(a) as follows: wi(a) = w(a) and
wny1(a) = w(wn(a)).
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wny1(a) = w(wn(a)).

e We inductively define (a) as follows:
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Operations

The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.

e We inductively define w,(a) as follows: wi(a) = w(a) and
wny1(a) = w(wn(a)).

e We inductively define (a) as follows: Given a = ajag,
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Operations

The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.

e We inductively define w,(a) as follows: wi(a) = w(a) and
wny1(a) = w(wn(a)).

e We inductively define (a) as follows: Given a = a; ag, then
(a) - wa(1), wn((aL + 1))wn((br — 1))
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Operations

The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.

e We inductively define w,(a) as follows: wi(a) = w(a) and
wny1(a) = w(wn(a)).

e We inductively define (a) as follows: Given a = a; ag, then
(a) - wa(1), wn((aL + 1))wn((br — 1))

@ So (0) = wn(1)0 = Lu.b.pew{wn(1) | n € w} =o.
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Operations

The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.

e We inductively define w,(a) as follows: wi(a) = w(a) and
wny1(a) = w(wa(a)).

e We inductively define (a) as follows: Given a = a; ag, then
(a) : wn(1),wn((arL 4 1))wn((br — 1))

@ So (0) =wp(1)0 = Lu.b.pew{wn(l) | n € w} =o.

@ Every surreal number can be uniquely expressed in the form

S wrr;.

i€a

Alexander Berenbeim Introduction to the Surreal Numbers



Operations

The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.

e We inductively define w,(a) as follows: wi(a) = w(a) and
wny1(a) = w(wa(a)).

e We inductively define (a) as follows: Given a = a; ag, then
(a) : wn(1),wn((arL 4 1))wn((br — 1))

@ So (0) =wp(1)0 = Lu.b.pew{wn(l) | n € w} =o.

@ Every surreal number can be uniquely expressed in the form

S wrr;.
i€Ea

@ As an immediate consequence, every surreal number
a=w?ry(1l+n), where n is an infinitesimal.
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Operations

The w map, map, and Cantor Normal Form

e % w(a) :={0,w }Hwr}S.

e We inductively define w,(a) as follows: wi(a) = w(a) and
wny1(a) = w(wa(a)).

e We inductively define (a) as follows: Given a = a; ag, then
(a) : wn(1),wn((arL 4 1))wn((br — 1))

@ So (0) =wp(1)0 = Lu.b.pew{wn(l) | n € w} =o.

@ Every surreal number can be uniquely expressed in the form

S wrr;.
Icx
@ As an immediate consequence, every surreal number
a = w?ry(1+n), where 7 is an infinitesimal.
@ In turn, is RCF, and inverses can be found using traditional
formal power series.
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Operations

Defining exp

@ Gonshor uniformly defined an exponential operation on via
exp(a) = {0, (expar)[a — ar]n, (exp ar)[a — arlani1}

exp(agr) exp ap
lar — aln’ [aL — a]2n+1

where [a],, is the partial series expansion up to n.
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exp(a) = {0, (expar)[a — ar]n, (exp ar)[a — arlani1}

exp(agr) exp ap
lar — aln’ [aL — a]2n+1

where [a],, is the partial series expansion up to n.

@ exp has all the desired properties.
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Operations

Defining exp

@ Gonshor uniformly defined an exponential operation on via
exp(a) = {0, (expar)[a — ar]n, (exp ar)[a — arlani1}

exp(ar)  expar
lar — aln’ [aL — a]2n+1
where [a],, is the partial series expansion up to n.
@ exp has all the desired properties.
@ exp(a) is a power of w for all purely infinite numbers, so for all

a € there is a canonical representation of exp a such that if a
is not strictly finite then

b
expa=w"“ e

where r is the finite part of a and W’ corresponds to the
infinite part of a.
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Defining exp

@ Gonshor uniformly defined an exponential operation on via
exp(a) = {0, (expar)[a — ar]n, (exp ar)[a — arlani1}

exp(ar)  expar
lar — aln’ [aL — a]2n+1
where [a],, is the partial series expansion up to n.
@ exp has all the desired properties.
@ exp(a) is a power of w for all purely infinite numbers, so for all

a € there is a canonical representation of exp a such that if a
is not strictly finite then

b
expa=w"“ e

where r is the finite part of a and W’ corresponds to the
infinite part of a.
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Operations

Defining log

o We define the natural log for our w powers
by ._ by bry _ ,  B=E bRy by boh
In(w®) := In(w”) 4+ n,In(w”) —w ™7 In(w®) — n,In(w") +w ™"

with n running through all natural numbers.
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Operations

Defining log

o We define the natural log for our w powers
—b b—b

b
In(w?) := In(w?) + n, In(wP) — w7 In(wP®) = n, In(w?) + w =
with n running through all natural numbers.

@ A sanity check: Consider
In(w) = In(w!).Then

In(w) = In(w®) + nln(w®) + (WHY" = pw?/" = W/¥
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Operations

Defining log

o We define the natural log for our w powers
br—b b—b

In(w?) := In(w?) + n, In(wP) — w7 In(wP®) = n, In(w?) + w =
with n running through all natural numbers.

@ A sanity check: Consider
In(w) = In(w!).Then

In(w) = In(w®) + nln(w®) + (WHY" = pw?/" = W/¥

e For all a € sur, log(w“”) is a power of w.

Alexander Berenbeim Introduction to the Surreal Numbers



Operations

Defining log

o We define the natural log for our w powers
—b b—b

b
In(w?) := In(w?) + n, In(wP) — w7 In(wP®) = n, In(w?) + w =
with n running through all natural numbers.

@ A sanity check: Consider
In(w) = In(w!).Then

In(w) = In(w®) + nln(w®) + (WHY" = pw?/" = W/¥

e For all a € sur, log(w“”) is a power of w.

@ The connection between exp and log are related to functions
denoted g and h relating the infinite powers of w.
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On, Off, and co

@ The class of surreal numbers is a totally disconnected when
using the standard notion of open intervals.
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On, Off, and co

@ The class of surreal numbers is a totally disconnected when
using the standard notion of open intervals.

@ A gap between two surreal numbers is defined wrt two classes
L, R such that if there is no a € L and b € R such that a > b,
i.e we represent gaps by games LR.
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@ A gap between two surreal numbers is defined wrt two classes
L, R such that if there is no a € L and b € R such that a > b,
i.e we represent gaps by games LR.

e While C, is properly a gap itself, namely =)
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@ The class of surreal numbers is a totally disconnected when
using the standard notion of open intervals.

@ A gap between two surreal numbers is defined wrt two classes
L, R such that if there is no a € L and b € R such that a > b,
i.e we represent gaps by games LR.

e While C, is properly a gap itself, namely =)
o Cheekily, Off = ().

Alexander Berenbeim Introduction to the Surreal Numbers



On, Off, and co

@ The class of surreal numbers is a totally disconnected when
using the standard notion of open intervals.

@ A gap between two surreal numbers is defined wrt two classes
L, R such that if there is no a € L and b € R such that a > b,
i.e we represent gaps by games LR.

e While C, is properly a gap itself, namely =)

o Cheekily, Off = ().

@ oo is the gap where L is the class of all finite positive and all

negative numbers, and R is the class of all infinite numbers.
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On, Off, and co

@ The class of surreal numbers is a totally disconnected when
using the standard notion of open intervals.

@ A gap between two surreal numbers is defined wrt two classes
L, R such that if there is no a € L and b € R such that a > b,
i.e we represent gaps by games LR.

e While C, is properly a gap itself, namely =)

o Cheekily, Off = ().

@ oo is the gap where L is the class of all finite positive and all

negative numbers, and R is the class of all infinite numbers.
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Gaps

Types of Gaps and a topology

@ Gaps come in two types with the following normal forms:

(I)Zwy"r,-
(N w’r ® (+w°)

i€Ea
where © is a gap whose right class contains all y;,
n®g=n+gn+gr, and w® = 0,w'aw’b with a, b €~ and
| €©; and r € Op.

Alexander Berenbeim Introduction to the Surreal Numbers



Gaps

Types of Gaps and a topology

@ Gaps come in two types with the following normal forms:

(I)Zwy"r,-
(N w’r ® (+w°)

i€Ea
where © is a gap whose right class contains all y;,
n®g=n+gn+gr and w® = 0,waw"b with a, b €5¢ and
| €©; and r € Op.
@ We topologize with a collection of subclasses A such that:
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Gaps

Types of Gaps and a topology

@ Gaps come in two types with the following normal forms:

(I)Zwy"r,-
(N w’r ® (+w°)

i€Ea
where © is a gap whose right class contains all y;,
n®g=n+gn+gr and w® = 0,waw"b with a, b €5¢ and
| €©; and r € Op.
@ We topologize with a collection of subclasses A such that:

(1) 0, € A;
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Gaps

Types of Gaps and a topology

@ Gaps come in two types with the following normal forms:
(1 Zwy"r,-
IS
(N w’r ® (+w°)
i€Ea

where © is a gap whose right class contains all y;,
n®g=n+gn+gr and w® = 0,waw"b with a, b €5¢ and
| € ©; and r € Op.

@ We topologize with a collection of subclasses A such that:

(1) 0,€ A; (2) (U Ai) € A for any subcollection of A;
icl
indexed by a proper set;
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Gaps

Types of Gaps and a topology

@ Gaps come in two types with the following normal forms:
(1 Zwy"r,-
IS
(N w’r ® (+w°)
i€Ea

where © is a gap whose right class contains all y;,
n®g=n+gn+gr and w® = 0,waw"b with a, b €5¢ and
| € ©; and r € Op.

@ We topologize with a collection of subclasses A such that:

(1) 0,€ A; (2) (U Ai) € A for any subcollection of A;
icl
indexed by a proper set; (3) [ A; indexed by a finite set |.
i€l
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Gaps

Types of Gaps and a topology

@ Gaps come in two types with the following normal forms:

(1 Z wrir;
ic
(N w’r ® (+w°)
i€Ea
where © is a gap whose right class contains all y;,
n®g=n+gn+gr, and w® = 0,w'aw’b with a, b €~ and
| €©; and r € Op.
@ We topologize with a collection of subclasses A such that:
(1) 0,€ A; (2) (U Ai) € A for any subcollection of A;
iel
indexed by a proper set; (3) [ A; indexed by a finite set |.
iel
@ So an interval of is open if it has endpoints in U{, Off} and it
does not contain it's own endpoints.
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Gaps

Types of Gaps and a topology

@ Gaps come in two types with the following normal forms:
(1 Zwy"r,-
IS
(N w’r ® (+w°)
i€Ea

where © is a gap whose right class contains all y;,
n®g=n+gn+gr and w® = 0,waw"b with a, b €5¢ and
| € ©; and r € Op.

@ We topologize with a collection of subclasses A such that:

(1) 0,€ A; (2) (U Ai) € A for any subcollection of A;
iel
indexed by a proper set; (3) [ A; indexed by a finite set |.
i€l
@ So an interval of is open if it has endpoints in U{, Off} and it
does not contain it's own endpoints.

Qff oo an open inte Ov (o NQ
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