
Anytime Multi-Armed Bandits Algorithms

Alexander Berenbeim

Today

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Anytime Multi-armed Bandit Algorithms

What Are Anytime Algorithms

Algorithms which generate imprecise but increasingly better
approximate solutions as run time T increases are anytime
algorithms, i.e. offer a trade off between solution quality and
computation time
The distinguishing feature of these algorithms is that we can
interrupt the algorithm at any time and receive an acceptable
approximate solution, e.g. the Newton-Raphson algorithm
Arise when making time dependent decisions: for example,
rerouting flights to minimize revenue loss given a storm.
Can be constructed as an algorithm with a parameter that
influences the running time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are Anytime Algorithms

Algorithms which generate imprecise but increasingly better
approximate solutions as run time T increases are anytime
algorithms, i.e. offer a trade off between solution quality and
computation time

The distinguishing feature of these algorithms is that we can
interrupt the algorithm at any time and receive an acceptable
approximate solution, e.g. the Newton-Raphson algorithm
Arise when making time dependent decisions: for example,
rerouting flights to minimize revenue loss given a storm.
Can be constructed as an algorithm with a parameter that
influences the running time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are Anytime Algorithms

Algorithms which generate imprecise but increasingly better
approximate solutions as run time T increases are anytime
algorithms, i.e. offer a trade off between solution quality and
computation time
The distinguishing feature of these algorithms is that we can
interrupt the algorithm at any time and receive an acceptable
approximate solution, e.g. the Newton-Raphson algorithm

Arise when making time dependent decisions: for example,
rerouting flights to minimize revenue loss given a storm.
Can be constructed as an algorithm with a parameter that
influences the running time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are Anytime Algorithms

Algorithms which generate imprecise but increasingly better
approximate solutions as run time T increases are anytime
algorithms, i.e. offer a trade off between solution quality and
computation time
The distinguishing feature of these algorithms is that we can
interrupt the algorithm at any time and receive an acceptable
approximate solution, e.g. the Newton-Raphson algorithm
Arise when making time dependent decisions: for example,
rerouting flights to minimize revenue loss given a storm.

Can be constructed as an algorithm with a parameter that
influences the running time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are Anytime Algorithms

Algorithms which generate imprecise but increasingly better
approximate solutions as run time T increases are anytime
algorithms, i.e. offer a trade off between solution quality and
computation time
The distinguishing feature of these algorithms is that we can
interrupt the algorithm at any time and receive an acceptable
approximate solution, e.g. the Newton-Raphson algorithm
Arise when making time dependent decisions: for example,
rerouting flights to minimize revenue loss given a storm.
Can be constructed as an algorithm with a parameter that
influences the running time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are Anytime Algorithms

Algorithms which generate imprecise but increasingly better
approximate solutions as run time T increases are anytime
algorithms, i.e. offer a trade off between solution quality and
computation time
The distinguishing feature of these algorithms is that we can
interrupt the algorithm at any time and receive an acceptable
approximate solution, e.g. the Newton-Raphson algorithm
Arise when making time dependent decisions: for example,
rerouting flights to minimize revenue loss given a storm.
Can be constructed as an algorithm with a parameter that
influences the running time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,

e.g.
Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness

Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds

Specificity: amount of particulars
4 Recognizable quality: the quality of an output can be

determined by runtime
5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time

6 Consistency: quality is correlated with computation time and
input quality

7 Diminishing Returns: solution quality improvement diminishes
over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality

7 Diminishing Returns: solution quality improvement diminishes
over time

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time
Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Should Anytime Algorithms Require

1 Interruptability: The algorithm can be stopped at any time
and provide an approximate solution

2 Preemptability: we can suspend the algorithm and resume it
with minimal overhead.

3 Measurable quality: qualities of approximate result have
precise measurements,e.g.

Certainty: probability of correctness
Accuracy: error bounds
Specificity: amount of particulars

4 Recognizable quality: the quality of an output can be
determined by runtime

5 Monotonicity: quality is non-decreasing function of run time
6 Consistency: quality is correlated with computation time and

input quality
7 Diminishing Returns: solution quality improvement diminishes

over time
Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

EXAMPLE: TSP

Any iterative improvement algorithm for TSP can be viewed as
an anytime algorithm

Specifically, finding a tour with minimum cost by randomized
tour improvement where r edges in one feasible tour are
exchanged for r edges not in the present solution such that the
new solution is a tour of cost less than the previous tour would
be an anytime algorithm.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

EXAMPLE: TSP

Any iterative improvement algorithm for TSP can be viewed as
an anytime algorithm
Specifically, finding a tour with minimum cost by randomized
tour improvement where r edges in one feasible tour are
exchanged for r edges not in the present solution such that the
new solution is a tour of cost less than the previous tour would
be an anytime algorithm.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

EXAMPLE: TSP

Any iterative improvement algorithm for TSP can be viewed as
an anytime algorithm
Specifically, finding a tour with minimum cost by randomized
tour improvement where r edges in one feasible tour are
exchanged for r edges not in the present solution such that the
new solution is a tour of cost less than the previous tour would
be an anytime algorithm.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are The Multiarmed Bandit Problems

Conceptually: A gambler needs to decide which arms of a
K-slot machine should be pulled to maximize total reward over
a series of trials.

Strategic Tradeoffs: Exploitation versus Exploration
Formally: MBP are described by pairing (S, Γ), where S is a set
whose elements are strategies and Γ, a family of functions
c : S → R, called cost functions
An MBA is a randomized online algorithm specified by
(Ωalg , {Xt : Ωalg × Rt−1 → S}t≤T)

Ωalg is a probability space, T is our run time
Xt(r , y1, . . . , yt−1) = x is read as choosing strategy x at time t
if the random seed is r and the costs observed for trials 1 to
t-1 are y1 to yt−1 respectively.

Performance is measured by regret, the difference between the
expected return of an optimal strategy and the gambler’s
expected return.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are The Multiarmed Bandit Problems

Conceptually: A gambler needs to decide which arms of a
K-slot machine should be pulled to maximize total reward over
a series of trials.
Strategic Tradeoffs: Exploitation versus Exploration

Formally: MBP are described by pairing (S, Γ), where S is a set
whose elements are strategies and Γ, a family of functions
c : S → R, called cost functions
An MBA is a randomized online algorithm specified by
(Ωalg , {Xt : Ωalg × Rt−1 → S}t≤T)

Ωalg is a probability space, T is our run time
Xt(r , y1, . . . , yt−1) = x is read as choosing strategy x at time t
if the random seed is r and the costs observed for trials 1 to
t-1 are y1 to yt−1 respectively.

Performance is measured by regret, the difference between the
expected return of an optimal strategy and the gambler’s
expected return.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are The Multiarmed Bandit Problems

Conceptually: A gambler needs to decide which arms of a
K-slot machine should be pulled to maximize total reward over
a series of trials.
Strategic Tradeoffs: Exploitation versus Exploration
Formally: MBP are described by pairing (S, Γ), where S is a set
whose elements are strategies and Γ, a family of functions
c : S → R, called cost functions

An MBA is a randomized online algorithm specified by
(Ωalg , {Xt : Ωalg × Rt−1 → S}t≤T)

Ωalg is a probability space, T is our run time
Xt(r , y1, . . . , yt−1) = x is read as choosing strategy x at time t
if the random seed is r and the costs observed for trials 1 to
t-1 are y1 to yt−1 respectively.

Performance is measured by regret, the difference between the
expected return of an optimal strategy and the gambler’s
expected return.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are The Multiarmed Bandit Problems

Conceptually: A gambler needs to decide which arms of a
K-slot machine should be pulled to maximize total reward over
a series of trials.
Strategic Tradeoffs: Exploitation versus Exploration
Formally: MBP are described by pairing (S, Γ), where S is a set
whose elements are strategies and Γ, a family of functions
c : S → R, called cost functions
An MBA is a randomized online algorithm specified by
(Ωalg , {Xt : Ωalg × Rt−1 → S}t≤T)

Ωalg is a probability space, T is our run time
Xt(r , y1, . . . , yt−1) = x is read as choosing strategy x at time t
if the random seed is r and the costs observed for trials 1 to
t-1 are y1 to yt−1 respectively.

Performance is measured by regret, the difference between the
expected return of an optimal strategy and the gambler’s
expected return.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are The Multiarmed Bandit Problems

Conceptually: A gambler needs to decide which arms of a
K-slot machine should be pulled to maximize total reward over
a series of trials.
Strategic Tradeoffs: Exploitation versus Exploration
Formally: MBP are described by pairing (S, Γ), where S is a set
whose elements are strategies and Γ, a family of functions
c : S → R, called cost functions
An MBA is a randomized online algorithm specified by
(Ωalg , {Xt : Ωalg × Rt−1 → S}t≤T)

Ωalg is a probability space, T is our run time

Xt(r , y1, . . . , yt−1) = x is read as choosing strategy x at time t
if the random seed is r and the costs observed for trials 1 to
t-1 are y1 to yt−1 respectively.

Performance is measured by regret, the difference between the
expected return of an optimal strategy and the gambler’s
expected return.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are The Multiarmed Bandit Problems

Conceptually: A gambler needs to decide which arms of a
K-slot machine should be pulled to maximize total reward over
a series of trials.
Strategic Tradeoffs: Exploitation versus Exploration
Formally: MBP are described by pairing (S, Γ), where S is a set
whose elements are strategies and Γ, a family of functions
c : S → R, called cost functions
An MBA is a randomized online algorithm specified by
(Ωalg , {Xt : Ωalg × Rt−1 → S}t≤T)

Ωalg is a probability space, T is our run time
Xt(r , y1, . . . , yt−1) = x is read as choosing strategy x at time t
if the random seed is r and the costs observed for trials 1 to
t-1 are y1 to yt−1 respectively.

Performance is measured by regret, the difference between the
expected return of an optimal strategy and the gambler’s
expected return.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are The Multiarmed Bandit Problems

Conceptually: A gambler needs to decide which arms of a
K-slot machine should be pulled to maximize total reward over
a series of trials.
Strategic Tradeoffs: Exploitation versus Exploration
Formally: MBP are described by pairing (S, Γ), where S is a set
whose elements are strategies and Γ, a family of functions
c : S → R, called cost functions
An MBA is a randomized online algorithm specified by
(Ωalg , {Xt : Ωalg × Rt−1 → S}t≤T)

Ωalg is a probability space, T is our run time
Xt(r , y1, . . . , yt−1) = x is read as choosing strategy x at time t
if the random seed is r and the costs observed for trials 1 to
t-1 are y1 to yt−1 respectively.

Performance is measured by regret, the difference between the
expected return of an optimal strategy and the gambler’s
expected return.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

What Are The Multiarmed Bandit Problems

Conceptually: A gambler needs to decide which arms of a
K-slot machine should be pulled to maximize total reward over
a series of trials.
Strategic Tradeoffs: Exploitation versus Exploration
Formally: MBP are described by pairing (S, Γ), where S is a set
whose elements are strategies and Γ, a family of functions
c : S → R, called cost functions
An MBA is a randomized online algorithm specified by
(Ωalg , {Xt : Ωalg × Rt−1 → S}t≤T)

Ωalg is a probability space, T is our run time
Xt(r , y1, . . . , yt−1) = x is read as choosing strategy x at time t
if the random seed is r and the costs observed for trials 1 to
t-1 are y1 to yt−1 respectively.

Performance is measured by regret, the difference between the
expected return of an optimal strategy and the gambler’s
expected return.

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T

We read Ct(r
′, x1, . . . , xt−1) = c as the choice of cost function

that an adversary makes given random seed and previous
strategies employed by the algorithm.
Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)
Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv and

xt(r , r
′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))

ct(r , r
′) = Ct(r

′, x1(r , r ′), . . . , xt−1(r , r ′))
yt(r , r

′) = ct(r , r
′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T
We read Ct(r

′, x1, . . . , xt−1) = c as the choice of cost function
that an adversary makes given random seed and previous
strategies employed by the algorithm.

Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)
Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv and

xt(r , r
′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))

ct(r , r
′) = Ct(r

′, x1(r , r ′), . . . , xt−1(r , r ′))
yt(r , r

′) = ct(r , r
′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T
We read Ct(r

′, x1, . . . , xt−1) = c as the choice of cost function
that an adversary makes given random seed and previous
strategies employed by the algorithm.
Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)

Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv and

xt(r , r
′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))

ct(r , r
′) = Ct(r

′, x1(r , r ′), . . . , xt−1(r , r ′))
yt(r , r

′) = ct(r , r
′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T
We read Ct(r

′, x1, . . . , xt−1) = c as the choice of cost function
that an adversary makes given random seed and previous
strategies employed by the algorithm.
Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)
Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv

and
xt(r , r

′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))
ct(r , r

′) = Ct(r
′, x1(r , r ′), . . . , xt−1(r , r ′))

yt(r , r
′) = ct(r , r

′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T
We read Ct(r

′, x1, . . . , xt−1) = c as the choice of cost function
that an adversary makes given random seed and previous
strategies employed by the algorithm.
Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)
Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv and

xt(r , r
′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))

ct(r , r
′) = Ct(r

′, x1(r , r ′), . . . , xt−1(r , r ′))
yt(r , r

′) = ct(r , r
′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T
We read Ct(r

′, x1, . . . , xt−1) = c as the choice of cost function
that an adversary makes given random seed and previous
strategies employed by the algorithm.
Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)
Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv and

xt(r , r
′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))

ct(r , r
′) = Ct(r

′, x1(r , r ′), . . . , xt−1(r , r ′))

yt(r , r
′) = ct(r , r

′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T
We read Ct(r

′, x1, . . . , xt−1) = c as the choice of cost function
that an adversary makes given random seed and previous
strategies employed by the algorithm.
Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)
Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv and

xt(r , r
′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))

ct(r , r
′) = Ct(r

′, x1(r , r ′), . . . , xt−1(r , r ′))
yt(r , r

′) = ct(r , r
′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T
We read Ct(r

′, x1, . . . , xt−1) = c as the choice of cost function
that an adversary makes given random seed and previous
strategies employed by the algorithm.
Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)
Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv and

xt(r , r
′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))

ct(r , r
′) = Ct(r

′, x1(r , r ′), . . . , xt−1(r , r ′))
yt(r , r

′) = ct(r , r
′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Analyzing an Adversarial Bandit Problem

An adversary for MBA is specified by Ωadv and
{Ct : Ωadv × St−1 → Γ}t≤T
We read Ct(r

′, x1, . . . , xt−1) = c as the choice of cost function
that an adversary makes given random seed and previous
strategies employed by the algorithm.
Adversaries can be oblivious or adaptive, and deterministic or
probabilistic, where the choice for oblivious adversaries is either
constant mapping on the domain, or dependent only on r (e.g.
Ct is a random variable)
Given ALG and ADV, the transcript of play is the tuple
(Ω, (xt), (ct), (yt)) where Ω = Ωalg × Ωadv and

xt(r , r
′) = Xt(r , y1(r , r ′), . . . , yt−1(r , r ′))

ct(r , r
′) = Ct(r

′, x1(r , r ′), . . . , xt−1(r , r ′))
yt(r , r

′) = ct(r , r
′)

Oblivious adversary algorithms have a regret lower bound of
Ω(
√
KT).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Measuring Regret

Given ALG and ADV on (S, Γ), the regret of ALG relative to
strategy x is

R(ALG, ADV; x ,T) = E

∑
t≤T

ct(xt)− ct(x)



The normalized regret is defined

R̄(ALG, ADV; x ,T) =
1
T
R(ALG, ADV; x ,T)

If A is a set of adversaries, and U ⊆ S, the normalized
U-regret of ALG against A is

R̄(ALG,A;U,T) := max
ADV∈A

max
x∈U

R̄(ALG, ADV; x ,T)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Measuring Regret

Given ALG and ADV on (S, Γ), the regret of ALG relative to
strategy x is

R(ALG, ADV; x ,T) = E

∑
t≤T

ct(xt)− ct(x)


The normalized regret is defined

R̄(ALG, ADV; x ,T) =
1
T
R(ALG, ADV; x ,T)

If A is a set of adversaries, and U ⊆ S, the normalized
U-regret of ALG against A is

R̄(ALG,A;U,T) := max
ADV∈A

max
x∈U

R̄(ALG, ADV; x ,T)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Measuring Regret

Given ALG and ADV on (S, Γ), the regret of ALG relative to
strategy x is

R(ALG, ADV; x ,T) = E

∑
t≤T

ct(xt)− ct(x)


The normalized regret is defined

R̄(ALG, ADV; x ,T) =
1
T
R(ALG, ADV; x ,T)

If A is a set of adversaries, and U ⊆ S, the normalized
U-regret of ALG against A is

R̄(ALG,A;U,T) := max
ADV∈A

max
x∈U

R̄(ALG, ADV; x ,T)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Measuring Regret

Given ALG and ADV on (S, Γ), the regret of ALG relative to
strategy x is

R(ALG, ADV; x ,T) = E

∑
t≤T

ct(xt)− ct(x)


The normalized regret is defined

R̄(ALG, ADV; x ,T) =
1
T
R(ALG, ADV; x ,T)

If A is a set of adversaries, and U ⊆ S, the normalized
U-regret of ALG against A is

R̄(ALG,A;U,T) := max
ADV∈A

max
x∈U

R̄(ALG, ADV; x ,T)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Good multiarmed algorithm: EXP3

(weak regret)
(
maxj

T∑
t=1

cj(t)

)
− E[GA(T)], where

GA(t) =
t∑

s=1
cis (s) the sum of observed rewards.

Exponential Weight Algorithm For Exploration and
Exploitation (EXP3) is a good algorithm for dealing with
adaptive adversaries
In EXP3, the probability of choosing the kth lever at round t is
defined by

pk(t) = (1− γ)
wk(t)∑

j∈[K]

wj(t)
+
γ

K

with the weight for the k th level updated as

wk(t + 1) = wk(t) exp

(
γ

cj(t)

pj(t)K

)
and otherwise

wj(t + 1) := wj(t).
When pitted against an adaptive adversary, EXP3 achieves
regret O(

√
TK log(K)) on strategy set {1, . . . ,K}

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Good multiarmed algorithm: EXP3

(weak regret)
(
maxj

T∑
t=1

cj(t)

)
− E[GA(T)], where

GA(t) =
t∑

s=1
cis (s) the sum of observed rewards.

Exponential Weight Algorithm For Exploration and
Exploitation (EXP3) is a good algorithm for dealing with
adaptive adversaries

In EXP3, the probability of choosing the kth lever at round t is
defined by

pk(t) = (1− γ)
wk(t)∑

j∈[K]

wj(t)
+
γ

K

with the weight for the k th level updated as

wk(t + 1) = wk(t) exp

(
γ

cj(t)

pj(t)K

)
and otherwise

wj(t + 1) := wj(t).
When pitted against an adaptive adversary, EXP3 achieves
regret O(

√
TK log(K)) on strategy set {1, . . . ,K}

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Good multiarmed algorithm: EXP3

(weak regret)
(
maxj

T∑
t=1

cj(t)

)
− E[GA(T)], where

GA(t) =
t∑

s=1
cis (s) the sum of observed rewards.

Exponential Weight Algorithm For Exploration and
Exploitation (EXP3) is a good algorithm for dealing with
adaptive adversaries
In EXP3, the probability of choosing the kth lever at round t is
defined by

pk(t) = (1− γ)
wk(t)∑

j∈[K]

wj(t)
+
γ

K

with the weight for the k th level updated as

wk(t + 1) = wk(t) exp

(
γ

cj(t)

pj(t)K

)
and otherwise

wj(t + 1) := wj(t).
When pitted against an adaptive adversary, EXP3 achieves
regret O(

√
TK log(K)) on strategy set {1, . . . ,K}

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Good multiarmed algorithm: EXP3

(weak regret)
(
maxj

T∑
t=1

cj(t)

)
− E[GA(T)], where

GA(t) =
t∑

s=1
cis (s) the sum of observed rewards.

Exponential Weight Algorithm For Exploration and
Exploitation (EXP3) is a good algorithm for dealing with
adaptive adversaries
In EXP3, the probability of choosing the kth lever at round t is
defined by

pk(t) = (1− γ)
wk(t)∑

j∈[K]

wj(t)
+
γ

K

with the weight for the k th level updated as

wk(t + 1) = wk(t) exp

(
γ

cj(t)

pj(t)K

)
and otherwise

wj(t + 1) := wj(t).
When pitted against an adaptive adversary, EXP3 achieves
regret O(

√
TK log(K)) on strategy set {1, . . . ,K}

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Good multiarmed algorithm: EXP3

(weak regret)
(
maxj

T∑
t=1

cj(t)

)
− E[GA(T)], where

GA(t) =
t∑

s=1
cis (s) the sum of observed rewards.

Exponential Weight Algorithm For Exploration and
Exploitation (EXP3) is a good algorithm for dealing with
adaptive adversaries
In EXP3, the probability of choosing the kth lever at round t is
defined by

pk(t) = (1− γ)
wk(t)∑

j∈[K]

wj(t)
+
γ

K

with the weight for the k th level updated as

wk(t + 1) = wk(t) exp

(
γ

cj(t)

pj(t)K

)
and otherwise

wj(t + 1) := wj(t).

When pitted against an adaptive adversary, EXP3 achieves
regret O(

√
TK log(K)) on strategy set {1, . . . ,K}

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Good multiarmed algorithm: EXP3

(weak regret)
(
maxj

T∑
t=1

cj(t)

)
− E[GA(T)], where

GA(t) =
t∑

s=1
cis (s) the sum of observed rewards.

Exponential Weight Algorithm For Exploration and
Exploitation (EXP3) is a good algorithm for dealing with
adaptive adversaries
In EXP3, the probability of choosing the kth lever at round t is
defined by

pk(t) = (1− γ)
wk(t)∑

j∈[K]

wj(t)
+
γ

K

with the weight for the k th level updated as

wk(t + 1) = wk(t) exp

(
γ

cj(t)

pj(t)K

)
and otherwise

wj(t + 1) := wj(t).
When pitted against an adaptive adversary, EXP3 achieves
regret O(

√
TK log(K)) on strategy set {1, . . . ,K}

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Good multiarmed algorithm: EXP3

(weak regret)
(
maxj

T∑
t=1

cj(t)

)
− E[GA(T)], where

GA(t) =
t∑

s=1
cis (s) the sum of observed rewards.

Exponential Weight Algorithm For Exploration and
Exploitation (EXP3) is a good algorithm for dealing with
adaptive adversaries
In EXP3, the probability of choosing the kth lever at round t is
defined by

pk(t) = (1− γ)
wk(t)∑

j∈[K]

wj(t)
+
γ

K

with the weight for the k th level updated as

wk(t + 1) = wk(t) exp

(
γ

cj(t)

pj(t)K

)
and otherwise

wj(t + 1) := wj(t).
When pitted against an adaptive adversary, EXP3 achieves
regret O(

√
TK log(K)) on strategy set {1, . . . ,K}

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Anytime Bandit Algorithms

We say ALG on strategy set N is an anytime bandit algorithm
on N if there exists τ : N× R>0 → N such that
R̄(ALG,Aobl ; {1, . . . , j},T) < δ for all T > τ(j , δ).

τ(j , δ) is called the convergence time for ALG
If such an algorithm exists, then for all probability spaces
(S, µ), there is an anytime algorithm for (S, µ), such that
τ : R2

>0 → N such that for all (ε, δ) ∈ R2
>0 and randomized

oblivious adversaries ADV, there is U ⊆ S such that
µ(S\U) ≤ ε and R̄(ALG, ADV;U,T) < δ for all T > τ(ε, δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Anytime Bandit Algorithms

We say ALG on strategy set N is an anytime bandit algorithm
on N if there exists τ : N× R>0 → N such that
R̄(ALG,Aobl ; {1, . . . , j},T) < δ for all T > τ(j , δ).
τ(j , δ) is called the convergence time for ALG

If such an algorithm exists, then for all probability spaces
(S, µ), there is an anytime algorithm for (S, µ), such that
τ : R2

>0 → N such that for all (ε, δ) ∈ R2
>0 and randomized

oblivious adversaries ADV, there is U ⊆ S such that
µ(S\U) ≤ ε and R̄(ALG, ADV;U,T) < δ for all T > τ(ε, δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Anytime Bandit Algorithms

We say ALG on strategy set N is an anytime bandit algorithm
on N if there exists τ : N× R>0 → N such that
R̄(ALG,Aobl ; {1, . . . , j},T) < δ for all T > τ(j , δ).
τ(j , δ) is called the convergence time for ALG
If such an algorithm exists, then for all probability spaces
(S, µ), there is an anytime algorithm for (S, µ), such that
τ : R2

>0 → N such that for all (ε, δ) ∈ R2
>0 and randomized

oblivious adversaries ADV, there is U ⊆ S such that
µ(S\U) ≤ ε and R̄(ALG, ADV;U,T) < δ for all T > τ(ε, δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Anytime Bandit Algorithms

We say ALG on strategy set N is an anytime bandit algorithm
on N if there exists τ : N× R>0 → N such that
R̄(ALG,Aobl ; {1, . . . , j},T) < δ for all T > τ(j , δ).
τ(j , δ) is called the convergence time for ALG
If such an algorithm exists, then for all probability spaces
(S, µ), there is an anytime algorithm for (S, µ), such that
τ : R2

>0 → N such that for all (ε, δ) ∈ R2
>0 and randomized

oblivious adversaries ADV, there is U ⊆ S such that
µ(S\U) ≤ ε and R̄(ALG, ADV;U,T) < δ for all T > τ(ε, δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing An Anytime Algorithm

Given any monotonic F : N→ N, we define ABA(F) as follows:

For each k ∈ N, at time F(k), ALG initializes EXP3 on strategy
set {1, 2, . . . , 2k}.
From F (k) to F (k + 1)− 1, it uses this instance of EXP3 to
select strategies in N.
At the end of each trial, the cost of the chosen strategy is fed
back into EXP3.

The rest of the talk consists of showing for the class of
adaptive adversaries A on strategy set N and cost function
class Γ = [0, 1]N, the regret of ABA (F) satisfies

R̄(ABA(F),A; [j]+,T) = O

F

(
dlog2 je

T

)
+

√
k2k

T



Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing An Anytime Algorithm

Given any monotonic F : N→ N, we define ABA(F) as follows:
For each k ∈ N, at time F(k), ALG initializes EXP3 on strategy
set {1, 2, . . . , 2k}.

From F (k) to F (k + 1)− 1, it uses this instance of EXP3 to
select strategies in N.
At the end of each trial, the cost of the chosen strategy is fed
back into EXP3.

The rest of the talk consists of showing for the class of
adaptive adversaries A on strategy set N and cost function
class Γ = [0, 1]N, the regret of ABA (F) satisfies

R̄(ABA(F),A; [j]+,T) = O

F

(
dlog2 je

T

)
+

√
k2k

T



Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing An Anytime Algorithm

Given any monotonic F : N→ N, we define ABA(F) as follows:
For each k ∈ N, at time F(k), ALG initializes EXP3 on strategy
set {1, 2, . . . , 2k}.
From F (k) to F (k + 1)− 1, it uses this instance of EXP3 to
select strategies in N.

At the end of each trial, the cost of the chosen strategy is fed
back into EXP3.

The rest of the talk consists of showing for the class of
adaptive adversaries A on strategy set N and cost function
class Γ = [0, 1]N, the regret of ABA (F) satisfies

R̄(ABA(F),A; [j]+,T) = O

F

(
dlog2 je

T

)
+

√
k2k

T



Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing An Anytime Algorithm

Given any monotonic F : N→ N, we define ABA(F) as follows:
For each k ∈ N, at time F(k), ALG initializes EXP3 on strategy
set {1, 2, . . . , 2k}.
From F (k) to F (k + 1)− 1, it uses this instance of EXP3 to
select strategies in N.
At the end of each trial, the cost of the chosen strategy is fed
back into EXP3.

The rest of the talk consists of showing for the class of
adaptive adversaries A on strategy set N and cost function
class Γ = [0, 1]N, the regret of ABA (F) satisfies

R̄(ABA(F),A; [j]+,T) = O

F

(
dlog2 je

T

)
+

√
k2k

T



Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing An Anytime Algorithm

Given any monotonic F : N→ N, we define ABA(F) as follows:
For each k ∈ N, at time F(k), ALG initializes EXP3 on strategy
set {1, 2, . . . , 2k}.
From F (k) to F (k + 1)− 1, it uses this instance of EXP3 to
select strategies in N.
At the end of each trial, the cost of the chosen strategy is fed
back into EXP3.

The rest of the talk consists of showing for the class of
adaptive adversaries A on strategy set N and cost function
class Γ = [0, 1]N, the regret of ABA (F) satisfies

R̄(ABA(F),A; [j]+,T) = O

F

(
dlog2 je

T

)
+

√
k2k

T



Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing a General Anytime Algorithm

Assume that AN is an anytime algorithm for N with
convergence time τ(j , δ).

For (S, µ), we make an anytime
algorithm as follows

1 Sample infinite sequence (xi)N ⊆ S
drawn iid with distribution $µ$

1 Aµ simulates AN choosing xj everytime AN chooses j ∈ N
2 Using lazy evaluation, when AN chooses a new j , Aµ draws xj

Aµ has convergence time τ∗(ε, δ) = τ

(⌈
1
ε
log

(
2
δ

)
e

)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing a General Anytime Algorithm

Assume that AN is an anytime algorithm for N with
convergence time τ(j , δ).For (S, µ), we make an anytime
algorithm as follows

1 Sample infinite sequence (xi)N ⊆ S
drawn iid with distribution $µ$

1 Aµ simulates AN choosing xj everytime AN chooses j ∈ N
2 Using lazy evaluation, when AN chooses a new j , Aµ draws xj

Aµ has convergence time τ∗(ε, δ) = τ

(⌈
1
ε
log

(
2
δ

)
e

)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing a General Anytime Algorithm

Assume that AN is an anytime algorithm for N with
convergence time τ(j , δ).For (S, µ), we make an anytime
algorithm as follows

1 Sample infinite sequence (xi)N ⊆ S
drawn iid with distribution $µ$

1 Aµ simulates AN choosing xj everytime AN chooses j ∈ N
2 Using lazy evaluation, when AN chooses a new j , Aµ draws xj

Aµ has convergence time τ∗(ε, δ) = τ

(⌈
1
ε
log

(
2
δ

)
e

)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing a General Anytime Algorithm

Assume that AN is an anytime algorithm for N with
convergence time τ(j , δ).For (S, µ), we make an anytime
algorithm as follows

1 Sample infinite sequence (xi)N ⊆ S
drawn iid with distribution $µ$

1 Aµ simulates AN choosing xj everytime AN chooses j ∈ N

2 Using lazy evaluation, when AN chooses a new j , Aµ draws xj

Aµ has convergence time τ∗(ε, δ) = τ

(⌈
1
ε
log

(
2
δ

)
e

)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing a General Anytime Algorithm

Assume that AN is an anytime algorithm for N with
convergence time τ(j , δ).For (S, µ), we make an anytime
algorithm as follows

1 Sample infinite sequence (xi)N ⊆ S
drawn iid with distribution $µ$

1 Aµ simulates AN choosing xj everytime AN chooses j ∈ N
2 Using lazy evaluation, when AN chooses a new j , Aµ draws xj

Aµ has convergence time τ∗(ε, δ) = τ

(⌈
1
ε
log

(
2
δ

)
e

)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Constructing a General Anytime Algorithm

Assume that AN is an anytime algorithm for N with
convergence time τ(j , δ).For (S, µ), we make an anytime
algorithm as follows

1 Sample infinite sequence (xi)N ⊆ S
drawn iid with distribution $µ$

1 Aµ simulates AN choosing xj everytime AN chooses j ∈ N
2 Using lazy evaluation, when AN chooses a new j , Aµ draws xj

Aµ has convergence time τ∗(ε, δ) = τ

(⌈
1
ε
log

(
2
δ

)
e

)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).

Since measure we have
θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}

U =
⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)]

= P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline Of Proof of Convergence

Let T ≥ τ∗(ε, δ) and for θ ∈ [0, 1], let Uθ denote the strategies
of S with average cost greater than θ (this is measurable).
Since measure we have

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂
θ<θ∗

Uθ

V = Uθ∗ =
⋃
θ>θ∗

Uθ

Since V ⊆ U and µ(V) ≤ 1− ε ≤ µ(U), if we set
j = d(1/ε) log(2/δ)e, and let E denote the event that
{x1, . . . , xk j} ⊆ V , then for any x ∈ U we find that

E[
1
T

∑
[T]

ct(xt)− c − t(x)] = P[E]E[
1
T

∑
[T]

ct(xt)− ct(x)||E]

+ (1− P[E])E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

≤ P[E] + E[
1
T

∑
[T]

ct(xt)− ct(x)||Ē]

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline of Proof of Convergence

To see that each term is less than δ/2, we can show that

P[E] ≤ (1− ε)j < e−jε ≤ δ/2
The definition of τ(ε, δ) implies that

E[1
T

∑
[T]

ct(xt)||x1, x2, . . . , xj] <

δ
2 + mini E[1

T

T∑
i=1

ct(xi)||x1, . . . , xj]

E[1
T

∑
[T]

ct(xi)||x1, . . . xj] = E[1
T

∑
[T]

ct(xi)] (if the adversary is

oblivious)
E[1

T

∑
[T]

ct(xt)||Ē] < δ
2 + E[1

T

∑
[T]

ct(x)||Ē]

Moreover, the inequality τ(j , δ) ≤ jpoly(log(1/ε), 1/δ) implies

that τ∗(ε, δ) ≤
1
ε
poly(log(1/ε), 1/δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline of Proof of Convergence

To see that each term is less than δ/2, we can show that
P[E] ≤ (1− ε)j < e−jε ≤ δ/2

The definition of τ(ε, δ) implies that
E[1

T

∑
[T]

ct(xt)||x1, x2, . . . , xj] <

δ
2 + mini E[1

T

T∑
i=1

ct(xi)||x1, . . . , xj]

E[1
T

∑
[T]

ct(xi)||x1, . . . xj] = E[1
T

∑
[T]

ct(xi)] (if the adversary is

oblivious)
E[1

T

∑
[T]

ct(xt)||Ē] < δ
2 + E[1

T

∑
[T]

ct(x)||Ē]

Moreover, the inequality τ(j , δ) ≤ jpoly(log(1/ε), 1/δ) implies

that τ∗(ε, δ) ≤
1
ε
poly(log(1/ε), 1/δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline of Proof of Convergence

To see that each term is less than δ/2, we can show that
P[E] ≤ (1− ε)j < e−jε ≤ δ/2
The definition of τ(ε, δ) implies that

E[1
T

∑
[T]

ct(xt)||x1, x2, . . . , xj] <

δ
2 + mini E[1

T

T∑
i=1

ct(xi)||x1, . . . , xj]

E[1
T

∑
[T]

ct(xi)||x1, . . . xj] = E[1
T

∑
[T]

ct(xi)] (if the adversary is

oblivious)
E[1

T

∑
[T]

ct(xt)||Ē] < δ
2 + E[1

T

∑
[T]

ct(x)||Ē]

Moreover, the inequality τ(j , δ) ≤ jpoly(log(1/ε), 1/δ) implies

that τ∗(ε, δ) ≤
1
ε
poly(log(1/ε), 1/δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline of Proof of Convergence

To see that each term is less than δ/2, we can show that
P[E] ≤ (1− ε)j < e−jε ≤ δ/2
The definition of τ(ε, δ) implies that

E[1
T

∑
[T]

ct(xt)||x1, x2, . . . , xj] <

δ
2 + mini E[1

T

T∑
i=1

ct(xi)||x1, . . . , xj]

E[1
T

∑
[T]

ct(xi)||x1, . . . xj] = E[1
T

∑
[T]

ct(xi)] (if the adversary is

oblivious)

E[1
T

∑
[T]

ct(xt)||Ē] < δ
2 + E[1

T

∑
[T]

ct(x)||Ē]

Moreover, the inequality τ(j , δ) ≤ jpoly(log(1/ε), 1/δ) implies

that τ∗(ε, δ) ≤
1
ε
poly(log(1/ε), 1/δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline of Proof of Convergence

To see that each term is less than δ/2, we can show that
P[E] ≤ (1− ε)j < e−jε ≤ δ/2
The definition of τ(ε, δ) implies that

E[1
T

∑
[T]

ct(xt)||x1, x2, . . . , xj] <

δ
2 + mini E[1

T

T∑
i=1

ct(xi)||x1, . . . , xj]

E[1
T

∑
[T]

ct(xi)||x1, . . . xj] = E[1
T

∑
[T]

ct(xi)] (if the adversary is

oblivious)
E[1

T

∑
[T]

ct(xt)||Ē] < δ
2 + E[1

T

∑
[T]

ct(x)||Ē]

Moreover, the inequality τ(j , δ) ≤ jpoly(log(1/ε), 1/δ) implies

that τ∗(ε, δ) ≤
1
ε
poly(log(1/ε), 1/δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Outline of Proof of Convergence

To see that each term is less than δ/2, we can show that
P[E] ≤ (1− ε)j < e−jε ≤ δ/2
The definition of τ(ε, δ) implies that

E[1
T

∑
[T]

ct(xt)||x1, x2, . . . , xj] <

δ
2 + mini E[1

T

T∑
i=1

ct(xi)||x1, . . . , xj]

E[1
T

∑
[T]

ct(xi)||x1, . . . xj] = E[1
T

∑
[T]

ct(xi)] (if the adversary is

oblivious)
E[1

T

∑
[T]

ct(xt)||Ē] < δ
2 + E[1

T

∑
[T]

ct(x)||Ē]

Moreover, the inequality τ(j , δ) ≤ jpoly(log(1/ε), 1/δ) implies

that τ∗(ε, δ) ≤
1
ε
poly(log(1/ε), 1/δ).

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

ATA Performance

For i ≥ dlog2 je, in the EXP3 subroutine from t0 = F (i) to
ti − 1 := min(T ,F (i + 1)− 1), the strategy x belongs to
[K] = [2i]

The regret bound for EXP3 guarantees

E

[
t1−1∑
t=t0

ct(xt)− ct(x)

]
= O(

√
K log(K)(t1 − t0) = O(

√
i2iT)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

ATA Performance

For i ≥ dlog2 je, in the EXP3 subroutine from t0 = F (i) to
ti − 1 := min(T ,F (i + 1)− 1), the strategy x belongs to
[K] = [2i]
The regret bound for EXP3 guarantees

E

[
t1−1∑
t=t0

ct(xt)− ct(x)

]
= O(

√
K log(K)(t1 − t0) = O(

√
i2iT)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

ATA Performance

For i ≥ dlog2 je, in the EXP3 subroutine from t0 = F (i) to
ti − 1 := min(T ,F (i + 1)− 1), the strategy x belongs to
[K] = [2i]
The regret bound for EXP3 guarantees

E

[
t1−1∑
t=t0

ct(xt)− ct(x)

]
= O(

√
K log(K)(t1 − t0) = O(

√
i2iT)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

ATA Performance (Ctd)

E

[
T∑
t=1

ct(xt)− ct(x)

]

=
k−1∑
i=1

E

min(T ,F (i+1)−1)∑
t=F (i)

ct(xt)− ct(x)


≤

∑
i<dlog2 je

min(T ,F (i+1)−1)∑
t=F (i)

1

+
∑

dlog2 je≤i<k

E

min(T ,F (i+1)−1)∑
t=F (i)

(ct(xt)− ct(x))


≤ F (dlog2 je) +

k−1∑
i=1

O(log i2iT)

= F (dlog2 je) + O(
√
k2kT)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

ATA Performance (Ctd)

E

[
T∑
t=1

ct(xt)− ct(x)

]
=

k−1∑
i=1

E

min(T ,F (i+1)−1)∑
t=F (i)

ct(xt)− ct(x)



≤
∑

i<dlog2 je

min(T ,F (i+1)−1)∑
t=F (i)

1

+
∑

dlog2 je≤i<k

E

min(T ,F (i+1)−1)∑
t=F (i)

(ct(xt)− ct(x))


≤ F (dlog2 je) +

k−1∑
i=1

O(log i2iT)

= F (dlog2 je) + O(
√
k2kT)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

ATA Performance (Ctd)

E

[
T∑
t=1

ct(xt)− ct(x)

]
=

k−1∑
i=1

E

min(T ,F (i+1)−1)∑
t=F (i)

ct(xt)− ct(x)


≤

∑
i<dlog2 je

min(T ,F (i+1)−1)∑
t=F (i)

1

+
∑

dlog2 je≤i<k

E

min(T ,F (i+1)−1)∑
t=F (i)

(ct(xt)− ct(x))



≤ F (dlog2 je) +
k−1∑
i=1

O(log i2iT)

= F (dlog2 je) + O(
√
k2kT)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

ATA Performance (Ctd)

E

[
T∑
t=1

ct(xt)− ct(x)

]
=

k−1∑
i=1

E

min(T ,F (i+1)−1)∑
t=F (i)

ct(xt)− ct(x)


≤

∑
i<dlog2 je

min(T ,F (i+1)−1)∑
t=F (i)

1

+
∑

dlog2 je≤i<k

E

min(T ,F (i+1)−1)∑
t=F (i)

(ct(xt)− ct(x))


≤ F (dlog2 je) +

k−1∑
i=1

O(log i2iT)

= F (dlog2 je) + O(
√
k2kT)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

ATA Performance (Ctd)

E

[
T∑
t=1

ct(xt)− ct(x)

]
=

k−1∑
i=1

E

min(T ,F (i+1)−1)∑
t=F (i)

ct(xt)− ct(x)


≤

∑
i<dlog2 je

min(T ,F (i+1)−1)∑
t=F (i)

1

+
∑

dlog2 je≤i<k

E

min(T ,F (i+1)−1)∑
t=F (i)

(ct(xt)− ct(x))


≤ F (dlog2 je) +

k−1∑
i=1

O(log i2iT)

= F (dlog2 je) + O(
√
k2kT)

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

Questions?

Alexander Berenbeim Anytime Multi-Armed Bandits Algorithms

