Anytime Multi-Armed Bandits Algorithms

Alexander Berenbeim

Today

Anytime Multi-armed Bandit Algorithms

 Algorithms which generate imprecise but increasingly better approximate solutions as run time T increases are anytime algorithms, i.e. offer a trade off between solution quality and computation time

- Algorithms which generate imprecise but increasingly better approximate solutions as run time T increases are anytime algorithms, i.e. offer a trade off between solution quality and computation time
- The distinguishing feature of these algorithms is that we can <u>interrupt</u> the algorithm at any time and receive an acceptable <u>approximate</u> solution, e.g. the Newton-Raphson algorithm

- Algorithms which generate imprecise but increasingly better approximate solutions as run time T increases are anytime algorithms, i.e. offer a trade off between solution quality and computation time
- The distinguishing feature of these algorithms is that we can <u>interrupt</u> the algorithm at any time and receive an acceptable approximate solution, e.g. the Newton-Raphson algorithm
- Arise when making time dependent decisions: for example, rerouting flights to minimize revenue loss given a storm.

- Algorithms which generate imprecise but increasingly better approximate solutions as run time T increases are anytime algorithms, i.e. offer a trade off between solution quality and computation time
- The distinguishing feature of these algorithms is that we can <u>interrupt</u> the algorithm at any time and receive an acceptable approximate solution, e.g. the Newton-Raphson algorithm
- Arise when making time dependent decisions: for example, rerouting flights to minimize revenue loss given a storm.
- Can be constructed as an algorithm with a parameter that influences the running time

- Algorithms which generate imprecise but increasingly better approximate solutions as run time T increases are anytime algorithms, i.e. offer a trade off between solution quality and computation time
- The distinguishing feature of these algorithms is that we can <u>interrupt</u> the algorithm at any time and receive an acceptable approximate solution, e.g. the Newton-Raphson algorithm
- Arise when making time dependent decisions: for example, rerouting flights to minimize revenue loss given a storm.
- Can be constructed as an algorithm with a parameter that influences the running time

Interruptability: The algorithm can be stopped at any time and provide an approximate solution

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements,

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements, e.g.
 - <u>Certainty</u>: probability of correctness

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements, e.g.
 - Certainty: probability of correctness
 - Accuracy: error bounds

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements, e.g.
 - Certainty: probability of correctness
 - Accuracy: error bounds
 - Specificity: amount of particulars

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements, e.g.
 - Certainty: probability of correctness
 - Accuracy: error bounds
 - Specificity: amount of particulars
- Recognizable quality: the quality of an output can be determined by runtime

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements, e.g.
 - Certainty: probability of correctness
 - Accuracy: error bounds
 - Specificity: amount of particulars
- Recognizable quality: the quality of an output can be determined by runtime
- Monotonicity: quality is non-decreasing function of run time

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements, e.g.
 - <u>Certainty</u>: probability of correctness
 - Accuracy: error bounds
 - Specificity: amount of particulars
- Recognizable quality: the quality of an output can be determined by runtime
- Monotonicity: quality is non-decreasing function of run time
- Consistency: quality is correlated with computation time and input quality

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements, e.g.
 - <u>Certainty</u>: probability of correctness
 - Accuracy: error bounds
 - Specificity: amount of particulars
- Recognizable quality: the quality of an output can be determined by runtime
- Monotonicity: quality is non-decreasing function of run time
- Consistency: quality is correlated with computation time and input quality
- Diminishing Returns: solution quality improvement diminishes over time

- Interruptability: The algorithm can be stopped at any time and provide an approximate solution
- Preemptability: we can suspend the algorithm and resume it with minimal overhead.
- Measurable quality: qualities of approximate result have precise measurements, e.g.
 - <u>Certainty</u>: probability of correctness
 - Accuracy: error bounds
 - Specificity: amount of particulars
- Recognizable quality: the quality of an output can be determined by runtime
- Monotonicity: quality is non-decreasing function of run time
- Consistency: quality is correlated with computation time and input quality
- Diminishing Returns: solution quality improvement diminishes over time

EXAMPLE: TSP

 Any iterative improvement algorithm for TSP can be viewed as an anytime algorithm

EXAMPLE: TSP

- Any iterative improvement algorithm for TSP can be viewed as an anytime algorithm
- Specifically, finding a tour with minimum cost by randomized tour improvement where r edges in one feasible tour are exchanged for r edges not in the present solution such that the new solution is a tour of cost less than the previous tour would be an anytime algorithm.

EXAMPLE: TSP

- Any iterative improvement algorithm for TSP can be viewed as an anytime algorithm
- Specifically, finding a tour with minimum cost by randomized tour improvement where r edges in one feasible tour are exchanged for r edges not in the present solution such that the new solution is a tour of cost less than the previous tour would be an anytime algorithm.

 Conceptually: A gambler needs to decide which arms of a K-slot machine should be pulled to maximize total reward over a series of trials.

- Conceptually: A gambler needs to decide which arms of a K-slot machine should be pulled to maximize total reward over a series of trials.
- Strategic Tradeoffs: Exploitation versus Exploration

- Conceptually: A gambler needs to decide which arms of a K-slot machine should be pulled to maximize total reward over a series of trials.
- Strategic Tradeoffs: Exploitation versus Exploration
- Formally: MBP are described by pairing (S, Γ) , where S is a set whose elements are strategies and Γ , a family of functions $c: S \to \mathbb{R}$, called cost functions

- Conceptually: A gambler needs to decide which arms of a K-slot machine should be pulled to maximize total reward over a series of trials.
- Strategic Tradeoffs: Exploitation versus Exploration
- Formally: MBP are described by pairing (S, Γ) , where S is a set whose elements are strategies and Γ , a family of functions $c: S \to \mathbb{R}$, called cost functions
- An MBA is a randomized online algorithm specified by $(\Omega_{alg}, \{X_t : \Omega_{alg} \times \mathbb{R}^{t-1} \to \mathcal{S}\}_{t \leq T})$

- Conceptually: A gambler needs to decide which arms of a K-slot machine should be pulled to maximize total reward over a series of trials.
- Strategic Tradeoffs: Exploitation versus Exploration
- Formally: MBP are described by pairing (S, Γ) , where S is a set whose elements are strategies and Γ , a family of functions $c: S \to \mathbb{R}$, called cost functions
- An MBA is a randomized online algorithm specified by $(\Omega_{alg}, \{X_t : \Omega_{alg} \times \mathbb{R}^{t-1} \to \mathcal{S}\}_{t \leq T})$
 - ullet Ω_{alg} is a probability space, T is our run time

- Conceptually: A gambler needs to decide which arms of a K-slot machine should be pulled to maximize total reward over a series of trials.
- Strategic Tradeoffs: Exploitation versus Exploration
- Formally: MBP are described by pairing (S,Γ) , where S is a set whose elements are strategies and Γ , a family of functions $c: S \to \mathbb{R}$, called cost functions
- An MBA is a randomized online algorithm specified by $(\Omega_{alg}, \{X_t : \Omega_{alg} \times \mathbb{R}^{t-1} \to \mathcal{S}\}_{t \leq T})$
 - ullet Ω_{alg} is a probability space, T is our run time
 - $X_t(r, y_1, ..., y_{t-1}) = x$ is read as *choosing* strategy x at time t if the *random seed* is r and the costs observed for trials 1 to t-1 are y_1 to y_{t-1} respectively.

- Conceptually: A gambler needs to decide which arms of a K-slot machine should be pulled to maximize total reward over a series of trials.
- Strategic Tradeoffs: Exploitation versus Exploration
- Formally: MBP are described by pairing (S, Γ) , where S is a set whose elements are strategies and Γ , a family of functions $c: S \to \mathbb{R}$, called cost functions
- An MBA is a randomized online algorithm specified by $(\Omega_{alg}, \{X_t : \Omega_{alg} \times \mathbb{R}^{t-1} \to \mathcal{S}\}_{t \leq T})$
 - ullet Ω_{alg} is a probability space, T is our run time
 - $X_t(r, y_1, ..., y_{t-1}) = x$ is read as *choosing* strategy x at time t if the *random seed* is r and the costs observed for trials 1 to t-1 are y_1 to y_{t-1} respectively.
- Performance is measured by regret, the difference between the expected return of an optimal strategy and the gambler's expected return.

- Conceptually: A gambler needs to decide which arms of a K-slot machine should be pulled to maximize total reward over a series of trials.
- Strategic Tradeoffs: Exploitation versus Exploration
- Formally: MBP are described by pairing (S, Γ) , where S is a set whose elements are strategies and Γ , a family of functions $c: S \to \mathbb{R}$, called cost functions
- An MBA is a randomized online algorithm specified by $(\Omega_{alg}, \{X_t : \Omega_{alg} \times \mathbb{R}^{t-1} \to \mathcal{S}\}_{t \leq T})$
 - ullet Ω_{alg} is a probability space, T is our run time
 - $X_t(r, y_1, ..., y_{t-1}) = x$ is read as *choosing* strategy x at time t if the *random seed* is r and the costs observed for trials 1 to t-1 are y_1 to y_{t-1} respectively.
- Performance is measured by regret, the difference between the expected return of an optimal strategy and the gambler's expected return.

• An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t \leq T}$

- An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t < T}$
- We read $C_t(r', x_1, ..., x_{t-1}) = c$ as the choice of cost function that an *adversary* makes given random seed and previous strategies employed by the algorithm.

- An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t < T}$
- We read $C_t(r', x_1, ..., x_{t-1}) = c$ as the choice of cost function that an *adversary* makes given random seed and previous strategies employed by the algorithm.
- Adversaries can be oblivious or adaptive, and deterministic or probabilistic, where the choice for oblivious adversaries is either constant mapping on the domain, or dependent only on r (e.g. C_t is a random variable)

- An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t < T}$
- We read $C_t(r', x_1, \dots, x_{t-1}) = c$ as the choice of cost function that an *adversary* makes given random seed and previous strategies employed by the algorithm.
- Adversaries can be oblivious or adaptive, and deterministic or probabilistic, where the choice for oblivious adversaries is either constant mapping on the domain, or dependent only on r (e.g. C_t is a random variable)
- Given ALG and ADV, the transcript of play is the tuple $(\Omega, (x_t), (c_t), (y_t))$ where $\Omega = \Omega_{alg} \times \Omega_{adv}$

- An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t < T}$
- We read $C_t(r', x_1, \dots, x_{t-1}) = c$ as the choice of cost function that an *adversary* makes given random seed and previous strategies employed by the algorithm.
- Adversaries can be oblivious or adaptive, and deterministic or probabilistic, where the choice for oblivious adversaries is either constant mapping on the domain, or dependent only on r (e.g. C_t is a random variable)
- Given ALG and ADV, the transcript of play is the tuple $(\Omega, (x_t), (c_t), (y_t))$ where $\Omega = \Omega_{alg} \times \Omega_{adv}$ and
 - $x_t(r,r') = X_t(r,y_1(r,r'),\ldots,y_{t-1}(r,r'))$

- An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t < T}$
- We read $C_t(r', x_1, \dots, x_{t-1}) = c$ as the choice of cost function that an *adversary* makes given random seed and previous strategies employed by the algorithm.
- Adversaries can be oblivious or adaptive, and deterministic or probabilistic, where the choice for oblivious adversaries is either constant mapping on the domain, or dependent only on r (e.g. C_t is a random variable)
- Given ALG and ADV, the transcript of play is the tuple $(\Omega, (x_t), (c_t), (y_t))$ where $\Omega = \Omega_{alg} \times \Omega_{adv}$ and
 - $x_t(r,r') = X_t(r,y_1(r,r'),\ldots,y_{t-1}(r,r'))$
 - $c_t(r,r') = C_t(r',x_1(r,r'),\ldots,x_{t-1}(r,r'))$

- An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t < T}$
- We read $C_t(r', x_1, \dots, x_{t-1}) = c$ as the choice of cost function that an *adversary* makes given random seed and previous strategies employed by the algorithm.
- Adversaries can be oblivious or adaptive, and deterministic or probabilistic, where the choice for oblivious adversaries is either constant mapping on the domain, or dependent only on r (e.g. C_t is a random variable)
- Given ALG and ADV, the transcript of play is the tuple $(\Omega, (x_t), (c_t), (y_t))$ where $\Omega = \Omega_{alg} \times \Omega_{adv}$ and
 - $x_t(r,r') = X_t(r,y_1(r,r'),\ldots,y_{t-1}(r,r'))$
 - $c_t(r,r') = C_t(r',x_1(r,r'),\ldots,x_{t-1}(r,r'))$
 - $y_t(r,r') = c_t(r,r')$

- An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t \leq T}$
- We read $C_t(r', x_1, \dots, x_{t-1}) = c$ as the choice of cost function that an *adversary* makes given random seed and previous strategies employed by the algorithm.
- Adversaries can be oblivious or adaptive, and deterministic or probabilistic, where the choice for oblivious adversaries is either constant mapping on the domain, or dependent only on r (e.g. Ct is a random variable)
- Given ALG and ADV, the transcript of play is the tuple $(\Omega, (x_t), (c_t), (y_t))$ where $\Omega = \Omega_{alg} \times \Omega_{adv}$ and
 - $x_t(r,r') = X_t(r,y_1(r,r'),\ldots,y_{t-1}(r,r'))$
 - $c_t(r,r') = C_t(r',x_1(r,r'),\ldots,x_{t-1}(r,r'))$
 - $y_t(r,r')=c_t(r,r')$
- Oblivious adversary algorithms have a regret lower bound of $\Omega(\sqrt{KT})$.

- An adversary for MBA is specified by Ω_{adv} and $\{C_t: \Omega_{adv} \times \mathcal{S}^{t-1} \to \Gamma\}_{t \leq T}$
- We read $C_t(r', x_1, \dots, x_{t-1}) = c$ as the choice of cost function that an *adversary* makes given random seed and previous strategies employed by the algorithm.
- Adversaries can be oblivious or adaptive, and deterministic or probabilistic, where the choice for oblivious adversaries is either constant mapping on the domain, or dependent only on r (e.g. Ct is a random variable)
- Given ALG and ADV, the transcript of play is the tuple $(\Omega, (x_t), (c_t), (y_t))$ where $\Omega = \Omega_{alg} \times \Omega_{adv}$ and
 - $x_t(r,r') = X_t(r,y_1(r,r'),\ldots,y_{t-1}(r,r'))$
 - $c_t(r,r') = C_t(r',x_1(r,r'),\ldots,x_{t-1}(r,r'))$
 - $y_t(r,r')=c_t(r,r')$
- Oblivious adversary algorithms have a regret lower bound of $\Omega(\sqrt{KT})$.

• Given ALG and ADV on (S, Γ) , the regret of ALG relative to strategy x is

$$R(ext{ALG, ADV}; x, T) = \mathbb{E}\left[\sum_{t \leq T} c_t(x_t) - c_t(x)
ight]$$

• Given ALG and ADV on (S, Γ) , the regret of ALG relative to strategy x is

$$R(ext{ALG, ADV}; x, T) = \mathbb{E}\left[\sum_{t \leq T} c_t(x_t) - c_t(x)
ight]$$

• The normalized regret is defined

$$ar{R}(\mathtt{ALG},\mathtt{ADV};x,T)=rac{1}{T}R(\mathtt{ALG},\mathtt{ADV};x,T)$$

• Given ALG and ADV on (S, Γ) , the regret of ALG relative to strategy x is

$$R(ext{ALG}, ext{ADV}; x, T) = \mathbb{E}\left[\sum_{t \leq T} c_t(x_t) - c_t(x)
ight]$$

The normalized regret is defined

$$\bar{R}(\mathtt{ALG},\mathtt{ADV};x,T)=rac{1}{T}R(\mathtt{ALG},\mathtt{ADV};x,T)$$

• If A is a set of adversaries, and $U \subseteq S$, the normalized U-regret of ALG against A is

$$ar{R}(\mathtt{ALG},\mathcal{A};U,T) := \max_{\mathtt{ADV} \in \mathcal{A}} \max_{x \in U} ar{R}(\mathtt{ALG},\mathtt{ADV};x,T)$$

• Given ALG and ADV on (S, Γ) , the regret of ALG relative to strategy x is

$$R(ext{ALG}, ext{ADV}; x, T) = \mathbb{E}\left[\sum_{t \leq T} c_t(x_t) - c_t(x)
ight]$$

The normalized regret is defined

$$\bar{R}(\mathtt{ALG},\mathtt{ADV};x,T)=rac{1}{T}R(\mathtt{ALG},\mathtt{ADV};x,T)$$

• If A is a set of adversaries, and $U \subseteq S$, the normalized U-regret of ALG against A is

$$ar{R}(\mathtt{ALG},\mathcal{A};U,T) := \max_{\mathtt{ADV} \in \mathcal{A}} \max_{x \in U} ar{R}(\mathtt{ALG},\mathtt{ADV};x,T)$$

• (weak regret)
$$\left(\max_{j}\sum_{t=1}^{T}c_{j}(t)\right) - \mathbb{E}[G_{A}(T)]$$
, where $G_{A}(t) = \sum_{s=1}^{t}c_{i_{s}}(s)$ the sum of observed rewards.

- (weak regret) $\left(\max_{j}\sum_{t=1}^{T}c_{j}(t)\right) \mathbb{E}[G_{A}(T)]$, where $G_{A}(t) = \sum_{s=1}^{t}c_{i_{s}}(s)$ the sum of observed rewards.
- Exponential Weight Algorithm For Exploration and Exploitation (EXP3) is a good algorithm for dealing with adaptive adversaries

- (weak regret) $\left(\max_{j}\sum_{t=1}^{T}c_{j}(t)\right) \mathbb{E}[G_{A}(T)]$, where $G_{A}(t) = \sum_{s=1}^{t}c_{i_{s}}(s)$ the sum of observed rewards.
- Exponential Weight Algorithm For Exploration and Exploitation (EXP3) is a good algorithm for dealing with adaptive adversaries
- In EXP3, the probability of choosing the k^{th} lever at round t is defined by

- (weak regret) $\left(\max_{j}\sum_{t=1}^{T}c_{j}(t)\right)-\mathbb{E}[G_{A}(T)]$, where $G_{A}(t)=\sum_{s=1}^{t}c_{i_{s}}(s)$ the sum of observed rewards.
- Exponential Weight Algorithm For Exploration and Exploitation (EXP3) is a good algorithm for dealing with adaptive adversaries
- In EXP3, the probability of choosing the k^{th} lever at round t is defined by

•
$$p_k(t) = (1 - \gamma) \frac{w_k(t)}{\sum\limits_{i \in [K]} w_i(t)} + \frac{\gamma}{K}$$

- (weak regret) $\left(\max_{j}\sum_{t=1}^{T}c_{j}(t)\right)-\mathbb{E}[G_{A}(T)]$, where $G_{A}(t)=\sum_{s=1}^{t}c_{i_{s}}(s)$ the sum of observed rewards.
- Exponential Weight Algorithm For Exploration and Exploitation (EXP3) is a good algorithm for dealing with adaptive adversaries
- In EXP3, the probability of choosing the kth lever at round t is defined by

•
$$p_k(t) = (1 - \gamma) \frac{w_k(t)}{\sum\limits_{j \in [K]} w_j(t)} + \frac{\gamma}{K}$$

 \bullet with the weight for the k^{th} level updated as

$$w_k(t+1) = w_k(t) \exp\left(\gamma \frac{c_j(t)}{p_j(t)K}\right)$$
 and otherwise $w_j(t+1) := w_j(t)$.

- (weak regret) $\left(\max_{j}\sum_{t=1}^{T}c_{j}(t)\right)-\mathbb{E}[G_{A}(T)]$, where $G_{A}(t)=\sum_{s=1}^{t}c_{i_{s}}(s)$ the sum of observed rewards.
- Exponential Weight Algorithm For Exploration and Exploitation (EXP3) is a good algorithm for dealing with adaptive adversaries
- In EXP3, the probability of choosing the kth lever at round t is defined by

•
$$p_k(t) = (1 - \gamma) \frac{w_k(t)}{\sum\limits_{j \in [K]} w_j(t)} + \frac{\gamma}{K}$$

ullet with the weight for the k^{th} level updated as

Alexander Berenbeim

$$w_k(t+1) = w_k(t) \exp\left(\gamma \frac{c_j(t)}{p_j(t)K}\right)$$
 and otherwise $w_i(t+1) := w_i(t)$.

• When pitted against an adaptive adversary, EXP3 achieves regret $O(\sqrt{TK \log(K)})$ on strategy set $\{1, \ldots, K\}$

Anytime Multi-Armed Bandits Algorithms

- (weak regret) $\left(\max_{j}\sum_{t=1}^{T}c_{j}(t)\right)-\mathbb{E}[G_{A}(T)]$, where $G_{A}(t)=\sum_{s=1}^{t}c_{i_{s}}(s)$ the sum of observed rewards.
- Exponential Weight Algorithm For Exploration and Exploitation (EXP3) is a good algorithm for dealing with adaptive adversaries
- In EXP3, the probability of choosing the kth lever at round t is defined by

•
$$p_k(t) = (1 - \gamma) \frac{w_k(t)}{\sum\limits_{j \in [K]} w_j(t)} + \frac{\gamma}{K}$$

ullet with the weight for the k^{th} level updated as

Alexander Berenbeim

$$w_k(t+1) = w_k(t) \exp\left(\gamma \frac{c_j(t)}{p_j(t)K}\right)$$
 and otherwise $w_i(t+1) := w_i(t)$.

• When pitted against an adaptive adversary, EXP3 achieves regret $O(\sqrt{TK \log(K)})$ on strategy set $\{1, \ldots, K\}$

Anytime Multi-Armed Bandits Algorithms

• We say ALG on strategy set $\mathbb N$ is an anytime bandit algorithm on $\mathbb N$ if there exists $\tau: \mathbb N \times \mathbb R_{>0} \to \mathbb N$ such that $\bar R(\mathtt{ALG}, \mathcal A_{obl}; \{1, \dots, j\}, T) < \delta$ for all $T > \tau(j, \delta)$.

- We say ALG on strategy set $\mathbb N$ is an anytime bandit algorithm on $\mathbb N$ if there exists $\tau: \mathbb N \times \mathbb R_{>0} \to \mathbb N$ such that $\bar R(\mathtt{ALG}, \mathcal A_{obl}; \{1, \dots, j\}, T) < \delta$ for all $T > \tau(j, \delta)$.
- ullet $au(j,\delta)$ is called the convergence time for ALG

- We say ALG on strategy set $\mathbb N$ is an anytime bandit algorithm on $\mathbb N$ if there exists $\tau: \mathbb N \times \mathbb R_{>0} \to \mathbb N$ such that $\bar R(\mathrm{ALG}, \mathcal A_{obl}; \{1, \dots, j\}, T) < \delta$ for all $T > \tau(j, \delta)$.
- $\tau(j,\delta)$ is called the convergence time for ALG
- If such an algorithm exists, then for all probability spaces (\mathcal{S},μ) , there is an anytime algorithm for (\mathcal{S},μ) , such that $\tau:\mathbb{R}^2_{>0}\to\mathbb{N}$ such that for all $(\varepsilon,\delta)\in\mathbb{R}^2_{>0}$ and randomized oblivious adversaries ADV, there is $U\subseteq\mathcal{S}$ such that $\mu(\mathcal{S}\backslash U)\leq \varepsilon$ and $\bar{R}(\mathrm{ALG},\mathrm{ADV};U,T)<\delta$ for all $T>\tau(\varepsilon,\delta)$.

- We say ALG on strategy set $\mathbb N$ is an anytime bandit algorithm on $\mathbb N$ if there exists $\tau: \mathbb N \times \mathbb R_{>0} \to \mathbb N$ such that $\bar R(\mathrm{ALG}, \mathcal A_{obl}; \{1, \dots, j\}, T) < \delta$ for all $T > \tau(j, \delta)$.
- $\tau(j,\delta)$ is called the convergence time for ALG
- If such an algorithm exists, then for all probability spaces (\mathcal{S},μ) , there is an anytime algorithm for (\mathcal{S},μ) , such that $\tau:\mathbb{R}^2_{>0}\to\mathbb{N}$ such that for all $(\varepsilon,\delta)\in\mathbb{R}^2_{>0}$ and randomized oblivious adversaries ADV, there is $U\subseteq\mathcal{S}$ such that $\mu(\mathcal{S}\backslash U)\leq \varepsilon$ and $\bar{R}(\mathrm{ALG},\mathrm{ADV};U,T)<\delta$ for all $T>\tau(\varepsilon,\delta)$.

• Given any monotonic $F: \mathbb{N} \to \mathbb{N}$, we define ABA(F) as follows:

- Given any monotonic $F : \mathbb{N} \to \mathbb{N}$, we define ABA(F) as follows:
 - For each $k \in \mathbb{N}$, at time F(k), ALG initializes EXP3 on strategy set $\{1, 2, \dots, 2^k\}$.

- Given any monotonic $F : \mathbb{N} \to \mathbb{N}$, we define ABA(F) as follows:
 - For each $k \in \mathbb{N}$, at time F(k), ALG initializes EXP3 on strategy set $\{1, 2, \dots, 2^k\}$.
 - From F(k) to F(k+1)-1, it uses this instance of EXP3 to select strategies in \mathbb{N} .

- Given any monotonic $F : \mathbb{N} \to \mathbb{N}$, we define ABA(F) as follows:
 - For each $k \in \mathbb{N}$, at time F(k), ALG initializes EXP3 on strategy set $\{1, 2, \dots, 2^k\}$.
 - From F(k) to F(k+1)-1, it uses this instance of EXP3 to select strategies in \mathbb{N} .
 - At the end of each trial, the cost of the chosen strategy is fed back into EXP3.

- Given any monotonic $F : \mathbb{N} \to \mathbb{N}$, we define ABA(F) as follows:
 - For each $k \in \mathbb{N}$, at time F(k), ALG initializes EXP3 on strategy set $\{1, 2, \dots, 2^k\}$.
 - From F(k) to F(k+1)-1, it uses this instance of EXP3 to select strategies in \mathbb{N} .
 - At the end of each trial, the cost of the chosen strategy is fed back into EXP3.
- The rest of the talk consists of showing for the class of adaptive adversaries $\mathcal A$ on strategy set $\mathbb N$ and cost function class $\Gamma = [0,1]^\mathbb N$, the regret of ABA (F) satisfies

$$ar{R}(\mathtt{ABA}(F),\mathcal{A};[j]_+,T) = O\left(F\left(rac{\lceil \log_2 j
ceil}{T}
ight) + \sqrt{rac{k2^k}{T}}
ight)$$

• Assume that $A_{\mathbb{N}}$ is an anytime algorithm for \mathbb{N} with convergence time $\tau(j,\delta)$.

• Assume that $A_{\mathbb{N}}$ is an anytime algorithm for \mathbb{N} with convergence time $\tau(j,\delta)$. For (\mathcal{S},μ) , we make an anytime algorithm as follows

- Assume that $A_{\mathbb{N}}$ is an anytime algorithm for \mathbb{N} with convergence time $\tau(j,\delta)$. For (\mathcal{S},μ) , we make an anytime algorithm as follows
 - Sample infinite sequence $(x_i)_{\mathbb{N}} \subseteq \mathcal{S}$ drawn iid with distribution μ

- Assume that $A_{\mathbb{N}}$ is an anytime algorithm for \mathbb{N} with convergence time $\tau(j,\delta)$. For (\mathcal{S},μ) , we make an anytime algorithm as follows
 - Sample infinite sequence $(x_i)_{\mathbb{N}} \subseteq \mathcal{S}$ drawn iid with distribution μ
 - **1** A_{μ} simulates $A_{\mathbb{N}}$ choosing x_j everytime $A_{\mathbb{N}}$ chooses $j \in \mathbb{N}$

- Assume that $A_{\mathbb{N}}$ is an anytime algorithm for \mathbb{N} with convergence time $\tau(j,\delta)$. For (\mathcal{S},μ) , we make an anytime algorithm as follows
 - Sample infinite sequence $(x_i)_{\mathbb{N}} \subseteq \mathcal{S}$ drawn iid with distribution μ
 - **1** A_{μ} simulates $A_{\mathbb{N}}$ choosing x_j everytime $A_{\mathbb{N}}$ chooses $j \in \mathbb{N}$
 - ② Using lazy evaluation, when $A_{\mathbb{N}}$ chooses a new j, A_{μ} draws x_j

- Assume that $A_{\mathbb{N}}$ is an anytime algorithm for \mathbb{N} with convergence time $\tau(j,\delta)$. For (\mathcal{S},μ) , we make an anytime algorithm as follows
 - Sample infinite sequence $(x_i)_{\mathbb{N}} \subseteq \mathcal{S}$ drawn iid with distribution μ
 - **1** A_{μ} simulates $A_{\mathbb{N}}$ choosing x_j everytime $A_{\mathbb{N}}$ chooses $j \in \mathbb{N}$
 - ② Using lazy evaluation, when $A_{\mathbb{N}}$ chooses a new j, A_{μ} draws x_j
- A_{μ} has convergence time $\tau^*(\varepsilon, \delta) = \tau\left(\left\lceil \frac{1}{\varepsilon} \log\left(\frac{2}{\delta}\right) \right\rceil\right)$

• Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have
 - $\theta^* = \inf\{\theta : \mu(U_\theta) < 1 \varepsilon\}$

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have
 - $\theta^* = \inf\{\theta : \mu(U_\theta) < 1 \varepsilon\}$
 - $U = \bigcap_{\theta < \theta^*} U_{\theta}$

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have

•
$$\theta^* = \inf\{\theta : \mu(U_\theta) < 1 - \varepsilon\}$$

•
$$U = \bigcap_{\theta < \theta^*} U_{\theta}$$

$$\bullet \ \ V = \bigcup_{\theta^*}^{\theta < \theta^*} = \bigcup_{\theta > \theta^*} U_{\theta}$$

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have

•
$$\theta^* = \inf\{\theta : \mu(U_\theta) < 1 - \varepsilon\}$$

•
$$U = \bigcap_{\theta < \theta^*} U_{\theta}$$

$$\bullet \ \ V = \bigcup_{\theta^*}^{\theta < \theta^*} = \bigcup_{\theta > \theta^*} U_{\theta}$$

• Since $V \subseteq U$ and $\mu(V) \le 1 - \varepsilon \le \mu(U)$, if we set $j = \lceil (1/\varepsilon) \log(2/\delta) \rceil$, and let \mathcal{E} denote the event that $\{x_1, \ldots, x_k j\} \subseteq V$, then for any $x \in U$ we find that

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have

•
$$\theta^* = \inf\{\theta : \mu(U_\theta) < 1 - \varepsilon\}$$

•
$$U = \bigcap_{\theta < \theta^*} U_{\theta}$$

•
$$V = U_{\theta^*} = \bigcup_{\theta > \theta^*} U_{\theta}$$

• Since $V \subseteq U$ and $\mu(V) \le 1 - \varepsilon \le \mu(U)$, if we set $j = \lceil (1/\varepsilon) \log(2/\delta) \rceil$, and let \mathcal{E} denote the event that $\{x_1, \dots, x_k j\} \subseteq V$, then for any $x \in U$ we find that

$$\mathbb{E}[\frac{1}{T}\sum_{[T]}c_t(x_t)-c-t(x)]$$

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have

•
$$\theta^* = \inf\{\theta : \mu(U_\theta) < 1 - \varepsilon\}$$

•
$$U = \bigcap_{\theta < \theta^*} U_{\theta}$$

•
$$V = U_{\theta^*} = \bigcup_{\theta > \theta^*} U_{\theta}$$

• Since $V \subseteq U$ and $\mu(V) \le 1 - \varepsilon \le \mu(U)$, if we set $j = \lceil (1/\varepsilon) \log(2/\delta) \rceil$, and let \mathcal{E} denote the event that $\{x_1, \dots, x_k j\} \subseteq V$, then for any $x \in U$ we find that

$$\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x_t) - c - t(x)\right] = \mathbb{P}[\mathcal{E}]\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x_t) - c_t(x)||\mathcal{E}\right] + (1 - \mathbb{P}[\mathcal{E}])\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x_t) - c_t(x)||\bar{\mathcal{E}}\right]$$

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have

•
$$\theta^* = \inf\{\theta : \mu(U_\theta) < 1 - \varepsilon\}$$

•
$$U = \bigcap_{\theta < \theta^*} U_{\theta}$$

•
$$V = U_{\theta^*} = \bigcup_{\theta > \theta^*} U_{\theta}$$

• Since $V \subseteq U$ and $\mu(V) \le 1 - \varepsilon \le \mu(U)$, if we set $j = \lceil (1/\varepsilon) \log(2/\delta) \rceil$, and let \mathcal{E} denote the event that $\{x_1,\ldots,x_kj\}\subseteq V$, then for any $x\in U$ we find that

$$\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_{t}(x_{t})-c-t(x)\right] = \mathbb{P}\left[\mathcal{E}\right]\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_{t}(x_{t})-c_{t}(x)||\mathcal{E}\right]$$

$$+ (1-\mathbb{P}\left[\mathcal{E}\right])\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_{t}(x_{t})-c_{t}(x)||\bar{\mathcal{E}}\right]$$

$$\leq \mathbb{P}\left[\mathcal{E}\right]+\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_{t}(x_{t})-c_{t}(x)||\bar{\mathcal{E}}\right]$$

- Let $T \ge \tau^*(\varepsilon, \delta)$ and for $\theta \in [0, 1]$, let U_θ denote the strategies of S with average cost greater than θ (this is measurable).
- Since measure we have

•
$$\theta^* = \inf\{\theta : \mu(U_\theta) < 1 - \varepsilon\}$$

•
$$U = \bigcap_{\theta < \theta^*} U_{\theta}$$

•
$$V = U_{\theta^*} = \bigcup_{\theta > \theta^*} U_{\theta}$$

• Since $V \subseteq U$ and $\mu(V) \le 1 - \varepsilon \le \mu(U)$, if we set $j = \lceil (1/\varepsilon) \log(2/\delta) \rceil$, and let \mathcal{E} denote the event that $\{x_1,\ldots,x_kj\}\subseteq V$, then for any $x\in U$ we find that

$$\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_{t}(x_{t})-c-t(x)\right] = \mathbb{P}\left[\mathcal{E}\right]\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_{t}(x_{t})-c_{t}(x)||\mathcal{E}\right]$$

$$+ (1-\mathbb{P}\left[\mathcal{E}\right])\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_{t}(x_{t})-c_{t}(x)||\bar{\mathcal{E}}\right]$$

$$\leq \mathbb{P}\left[\mathcal{E}\right]+\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_{t}(x_{t})-c_{t}(x)||\bar{\mathcal{E}}\right]$$

• To see that each term is less than $\delta/2$, we can show that

- To see that each term is less than $\delta/2$, we can show that
 - $\mathbb{P}[\mathcal{E}] \leq (1 \varepsilon)^j < e^{-j\varepsilon} \leq \delta/2$

- To see that each term is less than $\delta/2$, we can show that
 - $\mathbb{P}[\mathcal{E}] \leq (1 \varepsilon)^j < e^{-j\varepsilon} \leq \delta/2$
 - The definition of $\tau(\varepsilon, \delta)$ implies that
 - $\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x_t)||x_1,x_2,\ldots,x_j\right]$

$$rac{\delta}{2} + \min_i \mathbb{E}[rac{1}{T} \sum_{i=1}^T c_t(x_i) || x_1, \dots, x_j]$$

- To see that each term is less than $\delta/2$, we can show that
 - $\mathbb{P}[\mathcal{E}] \leq (1-\varepsilon)^j < e^{-j\varepsilon} \leq \delta/2$
 - The definition of $\tau(\varepsilon, \delta)$ implies that

•
$$\mathbb{E}[\frac{1}{T}\sum_{[T]} c_t(x_t)||x_1, x_2, \dots, x_j] < \frac{\delta}{2} + \min_i \mathbb{E}[\frac{1}{T}\sum_{i=1}^{T} c_t(x_i)||x_1, \dots, x_j]$$

• $\mathbb{E}[\frac{1}{T}\sum_{[T]}c_t(x_i)||x_1,\dots x_j] = \mathbb{E}[\frac{1}{T}\sum_{[T]}c_t(x_i)]$ (if the adversary is oblivious)

- To see that each term is less than $\delta/2$, we can show that
 - $\mathbb{P}[\mathcal{E}] \leq (1 \varepsilon)^j < e^{-j\varepsilon} \leq \delta/2$
 - The definition of $\tau(\varepsilon, \delta)$ implies that

•
$$\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x_t)||x_1,x_2,\ldots,x_j\right] < \frac{\delta}{2} + \min_{i} \mathbb{E}\left[\frac{1}{T}\sum_{i=1}^{T}c_t(x_i)||x_1,\ldots,x_j\right]$$

- $\mathbb{E}[\frac{1}{T}\sum_{[T]}c_t(x_i)||x_1,\ldots x_j] = \mathbb{E}[\frac{1}{T}\sum_{[T]}c_t(x_i)]$ (if the adversary is oblivious)
- $\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x_t)||\bar{\mathcal{E}}\right] < \frac{\delta}{2} + \mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x)||\bar{\mathcal{E}}\right]$

- To see that each term is less than $\delta/2$, we can show that
 - $\mathbb{P}[\mathcal{E}] \leq (1 \varepsilon)^j < e^{-j\varepsilon} \leq \delta/2$
 - The definition of $\tau(\varepsilon, \delta)$ implies that

•
$$\mathbb{E}[\frac{1}{T}\sum_{[T]} c_t(x_t)||x_1, x_2, \dots, x_j] < \frac{\delta}{2} + \min_i \mathbb{E}[\frac{1}{T}\sum_{i=1}^{T} c_t(x_i)||x_1, \dots, x_j]$$

- $\mathbb{E}[\frac{1}{T}\sum_{[T]}c_t(x_i)||x_1,\dots x_j] = \mathbb{E}[\frac{1}{T}\sum_{[T]}c_t(x_i)]$ (if the adversary is oblivious)
- $\mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x_t)||\bar{\mathcal{E}}\right] < \frac{\delta}{2} + \mathbb{E}\left[\frac{1}{T}\sum_{[T]}c_t(x)||\bar{\mathcal{E}}\right]$
- Moreover, the inequality $\tau(j,\delta) \leq jpoly(\log(1/\varepsilon),1/\delta)$ implies that $\tau^*(\varepsilon,\delta) \leq \frac{1}{\varepsilon}poly(\log(1/\varepsilon),1/\delta)$.

ATA Performance

• For $i \ge \lceil \log_2 j \rceil$, in the EXP3 subroutine from $t_0 = F(i)$ to $t_i - 1 := \min(T, F(i+1) - 1)$, the strategy x belongs to $[K] = [2^i]$

ATA Performance

- For $i \ge \lceil \log_2 j \rceil$, in the EXP3 subroutine from $t_0 = F(i)$ to $t_i 1 := \min(T, F(i+1) 1)$, the strategy x belongs to $[K] = [2^i]$
- The regret bound for EXP3 guarantees

$$\mathsf{E}\left[\sum_{t=t_0}^{t_1-1} c_t(x_t) - c_t(x)\right] = O(\sqrt{K\log(K)(t_1-t_0)}) = O(\sqrt{i2^i T})$$

ATA Performance

- For $i \ge \lceil \log_2 j \rceil$, in the EXP3 subroutine from $t_0 = F(i)$ to $t_i 1 := \min(T, F(i+1) 1)$, the strategy x belongs to $[K] = [2^i]$
- The regret bound for EXP3 guarantees

$$\mathsf{E}\left[\sum_{t=t_0}^{t_1-1} c_t(x_t) - c_t(x)\right] = O(\sqrt{K\log(K)(t_1-t_0)}) = O(\sqrt{i2^i T})$$

$$\mathbb{E}\left[\sum_{t=1}^T c_t(x_t) - c_t(x)\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} c_t(x_t) - c_t(x)\right] = \sum_{i=1}^{k-1} \mathbb{E}\left[\sum_{t=F(i)}^{\min(T,F(i+1)-1)} c_t(x_t) - c_t(x)\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} c_{t}(x_{t}) - c_{t}(x)\right] = \sum_{i=1}^{k-1} \mathbb{E}\left[\sum_{t=F(i)}^{\min(T,F(i+1)-1)} c_{t}(x_{t}) - c_{t}(x)\right]$$

$$\leq \sum_{i<\lceil \log_{2} j \rceil} \sum_{t=F(i)}^{\min(T,F(i+1)-1)} 1$$

$$+ \sum_{\lceil \log_{2} j \rceil \leq i < k} \mathbb{E}\left[\sum_{t=F(i)}^{\min(T,F(i+1)-1)} (c_{t}(x_{t}) - c_{t}(x))\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} c_t(x_t) - c_t(x)\right] = \sum_{i=1}^{k-1} \mathbb{E}\left[\sum_{t=F(i)}^{\min(T,F(i+1)-1)} c_t(x_t) - c_t(x)\right]$$

$$\leq \sum_{i < \lceil \log_2 j \rceil} \sum_{t=F(i)}^{\min(T,F(i+1)-1)} 1$$

$$+ \sum_{\lceil \log_2 j \rceil \le i < k} \mathbb{E}\left[\sum_{t=F(i)}^{\min(T,F(i+1)-1)} (c_t(x_t) - c_t(x))\right]$$

$$\leq F(\lceil \log_2 j \rceil) + \sum_{t=F(i)}^{k-1} O(\log i 2^i T)$$

$$\mathbb{E}\left[\sum_{t=1}^{T} c_{t}(x_{t}) - c_{t}(x)\right] = \sum_{i=1}^{k-1} \mathbb{E}\left[\sum_{t=F(i)}^{\min(T,F(i+1)-1)} c_{t}(x_{t}) - c_{t}(x)\right]$$

$$\leq \sum_{i < \lceil \log_{2} j \rceil} \sum_{t=F(i)}^{\min(T,F(i+1)-1)} 1$$

$$+ \sum_{\lceil \log_{2} j \rceil \le i < k} \mathbb{E}\left[\sum_{t=F(i)}^{\min(T,F(i+1)-1)} (c_{t}(x_{t}) - c_{t}(x))\right]$$

$$\leq F(\lceil \log_{2} j \rceil) + \sum_{i=1}^{k-1} O(\log i 2^{i} T)$$

$$= F(\lceil \log_{2} j \rceil) + O(\sqrt{k2^{k} T})$$

Questions?