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o Algorithms which generate imprecise but increasingly better
approximate solutions as run time T increases are anytime
algorithms, i.e. offer a trade off between solution quality and
computation time
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EXAMPLE: TSP

@ Any iterative improvement algorithm for TSP can be viewed as
an anytime algorithm
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@ Any iterative improvement algorithm for TSP can be viewed as
an anytime algorithm

@ Specifically, finding a tour with minimum cost by randomized
tour improvement where r edges in one feasible tour are
exchanged for r edges not in the present solution such that the
new solution is a tour of cost less than the previous tour would
be an anytime algorithm.
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K-slot machine should be pulled to maximize total reward over
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Analyzing an Adversarial Bandit Problem

@ An adversary for MBA is specified by Q,4, and
{Ct . Qadv X St_l — r}tST
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Measuring Regret

o Given ALG and ADV on (S, T), the regret of ALG relative to
strategy x is

R(ALG, ADV; x, T) = E | >~ ce(xe) — ce(x)
t<T
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Good multiarmed algorithm: EXP3

T
o (weak regret) (maxj > cj(t)> — E[Ga(T)], where

t=1

t
Ga(t) = > ci.(s) the sum of observed rewards.
s=1
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Anytime Bandit Algorithms

@ We say ALG on strategy set N is an anytime bandit algorithm
on N if there exists 7 : N x Ryg — N such that
R(ALG, Aopr; {1,...,j}, T) < d forall T > 7(j,0).
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Anytime Bandit Algorithms

@ We say ALG on strategy set N is an anytime bandit algorithm
on N if there exists 7 : N x Ryg — N such that
R(ALG, Aopr; {1,...,j}, T) < d forall T > 7(j,0).

e 7(j,6) is called the convergence time for ALG

@ If such an algorithm exists, then for all probability spaces
(S, ), there is an anytime algorithm for (S, 1), such that
7 :R2y — N such that for all (¢,§) € R2; and randomized
oblivious adversaries ADV, there is U C S such that
w(S\U) < € and R(ALG,ADV; U, T) < 6 for all T > 7(e,d).
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Constructing An Anytime Algorithm

@ Given any monotonic F : N — N, we define ABA(F) as follows:
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o For each k € N, at time F(k), ALG initializes EXP3 on strategy
set {1,2,...,2K}.
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Constructing An Anytime Algorithm

@ Given any monotonic F : N — N, we define ABA(F) as follows:
o For each k € N, at time F(k), ALG initializes EXP3 on strategy
set {1,2,...,2K}.
e From F(k) to F(k + 1) — 1, it uses this instance of EXP3 to
select strategies in N.
o At the end of each trial, the cost of the chosen strategy is fed
back into EXP3.
@ The rest of the talk consists of showing for the class of
adaptive adversaries A on strategy set N and cost function
class T = [0, 1]V, the regret of ABA (F) satisfies

R(ABA(F), A: ). T) = O | F (“O%rm) £y <
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Constructing a General Anytime Algorithm

@ Assume that Ay is an anytime algorithm for N with
convergence time 7(j, 9).
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Constructing a General Anytime Algorithm

@ Assume that Ay is an anytime algorithm for N with
convergence time 7(j, d).For (S, 1), we make an anytime
algorithm as follows

@ Sample infinite sequence (x;)y C S
drawn iid with distribution $u$

Q@ A, simulates Ay choosing x; everytime Ay chooses j € N
@ Using lazy evaluation, when Ay chooses a new j, A, draws $x;$

1 2
e A, has convergence time 7*(¢,0) =T <L|og <5>1>
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Outline Of Proof of Convergence

o Let T > 7%(e,0) and for 6 € [0, 1], let Uy denote the strategies
of S with average cost greater than 6 (this is measurable).
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o Let T > 7%(e,0) and for 6 € [0, 1], let Uy denote the strategies
of S with average cost greater than 6 (this is measurable).
@ Since measure we have
o 0" =inf{0: u(Up) <1—¢}
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Outline Of Proof of Convergence

o Let T > 7%(e,0) and for 6 € [0, 1], let Uy denote the strategies
of S with average cost greater than 6 (this is measurable).

@ Since measure we have
o O0* =inf{0: u(Up) <1—¢}

o U= Uy
0<6*
o V=Up= U U

>0
@ Since V C U and p(V) <1—¢ < pu(U), if we set

J=1(1/e)log(2/d)], and let £ denote the event that
{x1,...,xxj} € V, then for any x € U we find that

B[ 3" aulxe) — ¢ — ()

(7]
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o Let T > 7%(e,0) and for 6 € [0, 1], let Uy denote the strategies
of S with average cost greater than 6 (this is measurable).

@ Since measure we have
o O0* =inf{0: u(Up) <1—¢}

o U= Uy
0<0*
o V=Up= UJ Uy
0>0*

@ Since V C U and p(V) <1—¢ < pu(U), if we set
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Bl Y clx) — 1] = PIEELT X culx) - ()]

(7] (7]

b PEDELTE Y alx) — (lIE]
(7]
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@ To see that each term is less than /2, we can show that
o PEI<(1—cy <e¥®<§)/2
o The definition of 7(g,d) implies that
o B[+ c(x)||x1, x2, ..., x] <
(7]

.
S+ minE[+ X a(x)l|x, ..., x]]

i=1
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@ To see that each term is less than /2, we can show that
o PEI<(1—cy <e¥®<§)/2
o The definition of 7(e,d) implies that
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[7]
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o E[+ X c(xi)|x1,...x] = E[+ Y c(xi)] (if the adversary is
[T] [T]
oblivious)
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Outline of Proof of Convergence

@ To see that each term is less than /2, we can show that
o PEI<(1—cy <e¥®<§)/2
o The definition of 7(g,d) implies that
o B[+ c(x)||x1, x2, ..., x] <
(7]

-
g + min,—IE[% gct(x,-)ﬂxl, -

o E[+ X c(xi)|x1,...x] = E[+ Y c(xi)] (if the adversary is

m [T]
oblivious) _ -
o E[ [ET:] c(x)|lf] < 3 +E[: [zT:] ce(x)[|€]

@ Moreover, the inequality 7(j,0) < jpoly(log(1/e),1/d) implies
1
that 7%(¢,9) < gpo/y(log(l/s), 1/0).
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ATA Performance

e For i > [log, ], in the EXP3 subroutine from ty = F(i) to
ti —1:=min(T,F(i+ 1) — 1), the strategy x belongs to
[K] = [2']
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e For i > [log, ], in the EXP3 subroutine from ty = F(i) to
ti —1:=min(T,F(i+ 1) — 1), the strategy x belongs to
[K] = [2']

@ The regret bound for EXP3 guarantees

t1—1
E [Z ci(xe) - ct(x)] — O(v/Klog(K)(t — to) = O(V/i2'T)

t=to
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ATA Performance (Ctd)

t=F (i)

T k—1 min(T,F(i+1)—1)
E[th(xt)—ct(x)] = Zn«:[ > cr(xe) — ce(x)
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ATA Performance (Ctd)

DY

[log, j1<i<k

IN

2.

t=F (i)
min(T,F(i+1)—1)

>, X 1
i<[logs j] t=F(i)
|:m'n(T,F(i+1)1)

k—1 min(T,F(i+1)—1)
ct(xt) — ce(x)

2

t=F (i)

(ce(xt) — Ct(X))]
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T k—1 min(T,F(i+1)—1)
E[th(xt)—ct(x)] = Zn«:[ > Ct(xt)ct(x)]

t=F (i)
min(T,F(i+1)—1)

>, X 1
i<[logs j] t=F(i)
|:m'n(T,F(i+1)1)

Z (ce(xe) — Ct(X))]

IN

+ ) E

flog, /1<i<k e=F ()
k—1 )
< F([logzj1)+ > O(logi2'T)
i=1
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T k—1 min(T,F(i+1)—1)
E[th(xt)—ct(x)] = Zn«:[ > Ct(xt)ct(x)]

t=F (i)
min(T,F(i+1)—1)

>, X 1
i<[logs j] t=F(i)
|:m'n(T,F(i+1)1)

Z (ce(xe) — Ct(X))]

IN

+ ) E
[log, /] <i<k t=F (i)
k—1 )
F([logy 1)+ _ O(log i2'T)
i=1

= F([logaj1) + O(Vk2KT)

IN
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