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1 Introduction

In this paper we will discuss and expand upon geometric and combinatorial ideas discussed in
the paper ‘Sign rank versus VC dimension.’ First, in the introduction, we will provide motivation
for the topic addressed in that paper and summarize its findings. In the preliminaries section, we
will introduce the key ideas and concepts and flesh them out. In the results section we will expound
on our efforts to expand upon the original paper’s findings and ideas, and finally in the conclusion
we will propose further topics for research.

1.1 Motivation

1.1.1 Linear Classifiers

Linear classifiers rank among the simplest, most intuitive models of learning, yet are remark-
ably effective despite this unsophistication. Applications abound: the state of fields such as optical
character recognition and more generally computer vision, natural language processing, and bioin-
formatics, all rely crucially on linear classification. Development of linear classifiers began with the
Perceptron algorithm of the 50’s [1]. The Winnow algorithm [2] and it’s variants emphasized the
importance of the method in the 80’s. Study of the topic proliferated in the 90’s, witnessing rapid
evolution in such areas as support vector machine (SVM) theory and kernel methods [3].

Kernel methods allow one to reduce a host of learning problems to the tidy framework of
half-spaces. The idea is to embed the hypothesis class in a Euclidean half-space such that for all
hypotheses h : x→ {±1}, we can separate h−1(1) and h−1(−1) with a hyperplane. If the embedding
is to a low dimensional space or if a notion of a margin dividing samples of different labels is large,
then a good generalization rate is guaranteed. In fact, the two concepts are related—an embedding
with large margin can be projected to a low dimensional space [4].
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1.2 VC Dimension and Sign Rank

In light of the previous discussion, a natural questions surfaces: are there learning machines
utilizing embeddings in half spaces that are “universal” learners? This is meant in the sense that
they can guarantee a healthy generalization error for any class. Ben-David, Eiron, and Simon
dashed our hopes [5]. In the language of sign rank, they have shown

Proposition 1. Almost all hypothesis classes C ⊆ {±1}N with fixed VC dimension d > 1 have sign
rank NΩ(1). [5, 6]

VC dimension has been found to quantify sample complexity [7] and sign rank bears relation
to generalization guarantees of learning algorithms including large margin and kernel classifiers [8].
Alon et al. [6] summarized that, “loosely speaking, the VC dimension relates to learnability, while
sign rank relates to learnability by linear classifiers.” Thus the result by Ben-David et al. suggests
that there exist hypothesis classes that although learnable, are learned in a weak sense by linear
classifiers. Moreover, a stronger statement holds that this is the common case.

This does not, however, suggest that learning machines such as SVMs are worthless. There are
certainly many important classes—for example monomials and decision lists—that can be reason-
ably embedded [5].

The arguments used by Ben-David et al. only showed the existence of poorly-embedding classes,
along with their omnipresence. Constructions of such classes are rare. The development of tech-
niques to concretely study the “embeddability” of a given concept class is necessary to study the
question further, although headway has already been made [9].

1.3 Computational Complexity

VC dimension and sign rank also hold significance in computational complexity. Their relation-
ship under this interpretation has been investigated in previous papers [10,11].

2 Preliminary Combinatorial Concepts

A matrix M = [mij] with all non-zero entries is comprised of entries that are either positive or
negative. The sign matrix S = [sij] corresponding to M has sij = 1 if mij is positive, and sij = −1
is mij is negative. Therefore the sign matrix is a matrix with entries in {−1, 1}. So, a sign matrix

S =

[
1 −1
1 −1

]
corresponds to an entire class of underlying matrices, i.e. matrices for which entries

that have positive entries in the first column and negative entries in the second. In this way, each
sign matrix corresponds to an entire class of underlying matrices.

We will compare and contrast several combinatorial features of sign matrices, including sign
rank, dual sign rank, and VC dimension.

Definition 1. For a real matrix M with no zero entries, let sign(M) denote the sign matrix such
that (sign(M))i,j = sign(Mi,j) for all i, j . The sign rank of a sign matrix S is defined as

sign− rank(S) = min{rank(M) : sign(M) = S},
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where the rank is over the real numbers. It captures the minimum dimension of a real space in
which the matrix can be embedded using half spaces through the origin.

For example, suppose S =

[
1 1
−1 −1

]
. Then to find the sign rank of S, we need the minimum

rank of all possible underlying matrices of the form S =

[
a −b
c −d

]
, where a, b, c, d > 0. Note that if

we choose a = b = c = d = 1, we get S, which has rank 1. Therefore sign− rank(S) ≤ 1. Can we
ever get the rank of an underlying matrix down to zero? No, because all entries are nonzero, hence
we are always guaranteed a nonzero column. Hence sign− rank(S) = 1.

Another simple example is if S =

[
1 −1
1 1

]
. In this case, an underlying matrix of the form

S =

[
a −b
c d

]
would have determinant ad + bc, which could never be zero since a, b, c, d are all

positive. Hence all underlying matrices are of full rank. Therefore sign− rank(S) = 2.

Definition 2. The dual sign rank of S is the maximum number k such that there exists k columns
j1, ..., jk are linearly independent in M .

Note that the dual sign rank can never be larger than the sign rank, since the rank of an
underlying matrix is always greater than or equal to the rank of an underlying matrix restricted to
specific columns. In the two worked out examples above, the sign rank and the dual sign rank are
equal. A matrix needs to be sufficiently large and complex in order for the two to be different. We
go into this in further detail in the results section.

Next we will define VC dimension, a concept that comes up often in machine learning and in
combinatorics.

Definition 3. A subset C of the columns of S is called shattered if each of the 2|C| different patterns
of ones and minus ones appears in some row in the restriction of S to the columns in C.

Definition 4. The VC dimension of S, denoted V C(S) is the maximum size of a shattered subset
of columns. It captures the size of the minimum ε-net for the underlying set system.

For example, if S =

 1 −1
−1 −1
1 −1

 , the VC dimension is 1. We can obviously shatter this in the

first column. There, we have all 21 possible combinations of -1 and 1, namely {−1, 1}. However,
in the two columns that we have we only have three rows, so we cannot possibly have all 22 = 4
distinct pairs: {(−1, 1), (1,−1), (1, 1), (−1,−1)}. We are missing (1, 1). Hence VC dimension is
precisely 1.

It turns out the VC dimension is almost equivalent to the dual sign rank. The relationship is
the following:

Proposition 2. Given a sign matrix S, V C(S) ≤ dual − sign− rank(S) ≤ 2V C(S) + 1.

In proving the upper bound, we need to understand sign change.
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Definition 5. For a sign matrix S, the sign change of S, denoted SC(S) , is the maximum
number of sign changes along a column of S.

For example, if S =

 1 −1
−1 −1
1 1

 , then SC(S) = 2 because in the first column we have two sign

changes and in the second we have one, and max{2, 1} = 2.

Definition 6. Define SC∗(S) = minSC(M) where the minimum is taken over all matrices M
obtained from S by a permutation of the rows.

Going back to our previous example where S =

 1 −1
−1 −1
1 1

 , we could permute the rows by

switching the first and second rows to get S ′ =

−1 −1
1 −1
1 1

 . Then SC(S ′) = 1. Can we find a

permutation that does better, i.e. with SC(S ′′) = 0? No, because there exists both negatives and
positives in the first column so at some point there must be a sign change. Therefore, SC∗(S) = 1.

3 Outline of Alon, Moran, and Yehudayoff Paper

Alon, Moran, and Yehudayoff studied the relationship between VC dimension and sign rank [6].

3.1 Results

3.1.1 VC Dimension and Dual Sign Rank

The dual sign rank is nearly equivalent to VC dimension:

Proposition 3. VC(S) ≤ DSR(S) ≤ 2VC(S) + 1.

This serves as further motivation for understanding the gap between VC dimension and sign
rank, as it would shed light on that between sign rank and dual sign rank.

3.1.2 Maximum Sign Rank

By definition, it is clear that DSR(S) ≤ SR(S). By Proposition (3), it then holds that

VC(S) ≤ SR(S).

However, by Proposition (1), we can find no such reverse bound, i.e. the sign rank is not upper
bounded by any function of VC dimension. To tease out information regarding the relationship,
Alon et al. turned to estimating the maximum possible sign rank of N×N matrices of VC dimension
d, denoted by f(N, d).

There is an interesting contrast between the behaviour of f(N, d) when d = 1 and d > 1.
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Theorem 4 (Proved by [12]). f(N, 1) ≤ 3.

A construction, namely the signed identity matrix, for N ≥ 4 strengthens the above to an
equality. However, f(N, d) has characteristically different behaviour when d > 1:

Theorem 5.

1. f(N, 2) ≥ Ω(N1/2/ logN)

2. f(N, 3) ≥ Ω(N8/15/ logN)

3. f(N, 4) ≥ Ω(N2/3/ logN)

4. for d > 4, f(N, d) ≥ Ω(N1−1/d−(3d−1)/(d3+2d2+3d)/ logN).

Theorem (5) demonstrates that for d > 1, the maximum sign rank runs off with dimension N .
Alon et al. provide an upper bound as well, using spanning trees and stabbing number.

Theorem 6. For fixed d ≥ 2, f(N, d) ≤ O(N1−1/d).

3.1.3 Sign Rank and Spectral Gap

The combinatorial structure of boolean matrices is related to that of its spectrum [13]. The
paper proves a related idea

Theorem 7. Let B be a ∆ regular N × N boolean matrix, where ∆ ≤ N/2. Define S = sign(B).
Then

SR(S) ≥ ∆

σ2(B)
.

3.1.4 Maximum Classes

Let C = {±1}N , where VC(C) = d. C is called maximum when it satisfies the equality in the
Sauer-Shelah bound. Some leading examples—hamming balls of radius d and hyperplanes in Rd

suggest that—maximum classes have sign rank depending only on VC dimension [14].
Along et al. provide an answer in the negation in their following proposition

Proposition 8. Even for VC dimension 2, there are maximum classes C = {±1}N where SR(C) =
Ω(N1/2/ logN).

3.1.5 Explicit Constructions

The spectral lower bound on sign rank given in Theorem (7) readily produces examples of
matrices with high sign rank. These are interesting and novel constructions in light of the discussion
of Section 1.2.

5



3.1.6 Counting Classes

The authors provide bounds on the cardinality of the family of classes of fixed VC dimension.
Letting c(N, d) be the number of classes C = {±1}N where VC(C) = d, the following upper and
lower bounds were given

Theorem 9. For each d > 0, there exists an N0(d) such that for all N > N0(d), we have

N (Ω(N/d))d ≤ c(N, d) ≤ N (O(N))d .

4 Preliminary Algebraic and Geometric Concepts

The connections between sign rank computation and VC dimension are only now being estab-
lished. Much of the work that relates the two has been handled using results from spectral theory,
and, more generally, from work in computational geometry. In fact, the connections between learn-
ing theory and geometry are quite deep, and are worth investigating further.

Definition 7. A pre-geometry G = (G, cl) consists of a set G and a function cl : P(G)→ P(G)
such that:

• A ⊆ G⇒ (A ⊆ cl(A) ∧ cl(cl(A)) = cl(A));

• A ⊆ B ⊆ G⇒ cl(A) ⊆ cl(B);

• (A ⊆ G ∧ a ∈ G ∧ b ∈ G ∧ a ∈ cl(A ∪ {b}))⇒ (a ∈ cl(A) ∨ b ∈ cl(A ∪ {b}));

• A ⊆ G ∧ a ∈ cl(A)⇒ ∃A0 ⊆ A(|A0| <∞∧ a ∈ cl(A0)).

A pre-geometry G is a geometry if cl(∅) = ∅ and cl({x}) = {x}.
An incidence geometry IG = (G, ./) is a geometry with a binary reflexive and symmetric

relation on P(G). A flag F ⊆ P(G) consists of the set of elements of the geometry which are
mutually incident. A maximal flag is one which is not contained in a larger flag. When all
maximal flags of an incidence geometry are the same cardinality, this value is the rank of the
geometry.

Whenever an incidence geometry is of rank r, G can be partitioned into r distinct sets Gi such
that every maximal flag contains exactly one element of each set. The elements of Gi are called
elements of type i.

Lemma 1. If G is an incidence geometry of rank r, then no two distinct elements of the same type
are incident.

Proof. If not, then there are two distinct elemenets of the same type that are incident. Since these
elements then form a flag, these elements are contained in some maximal flag, contradicting the
definition of a maximal flag.
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subsectionGeometries and Linear Algebra The connections between algebra and geometry are
quite deep, and best left for another time. The important concepts to take away are that tools of
linear algebra can be used to study incidence geometries in natural (albeit contravariant ways, such
that one may regard the geometry as the syntax, and the algebra as the semantics).

The first intuitive connection is that of a subspace. We first say that a subset U of the point set
P is linear if for any two points in U , there is a line between them. The space P(U) = (U,L, ./) is a
linear subspace of P where L are the sets of lines contained in U and ./ is the induced incidence.
We further define a span of any subset X ⊂ U as

〈X〉 =
⋂
{U | X ⊂ U,U is linear set}.

From here, we define planes to be the span of a set of three noncollinear points, and a set B ⊂ P
is a basis if and only if it is a minimal spanning set of P.

There are several examples of geometries with natural linear algebras that are central to the
study of sign rank and VC dimension. We describe three of them as follows:

4.1 Graphs

Graphs have an eminently intuitive incidence geometry, as all edges are defined to be incident to
two vertices, and no two distinct vertices are incident to another. Graphs are rank two geometries
by construction.

Moreover, given any graph G = (V,E), we can turn P(V ) and P(E) into natural vector spaces,
V(G) and E(G) by considering both to be spaces of functions V → F2 and E → F2 respectively,
with addition handled by the symmetric differences of the respective subsets of V,E. Furthermore,
there is a natural inner product that we can put on the edge space. Given A,B ∈ E(G),

〈AB〉 :=
∑
e∈E

A(e)B(e).

This natural inner product will be zero if and only if A,B have an even number of edges in common.
Moreover, we can define the orthogonal complement for a subspace F ⊆ E(G) as

F⊥ := {B ∈ E(G) | ForallA ∈ F〈AB〉 = 0}.

Finally, as a reminder, the incidence matrix ι(G) of a graph is used to define a linear transforma-
tion ι(G) : E(G)→ V(V ) with respect to the standard bases. Furthermore, the adjacency matrix
α(G) and the valence matrix ν(G) (which is a real diagonal matrix whose diagonals consist of the
valence of the vertices vi), relate to the incidence matrix as follows:

ι(G)ι(G)> = α(G) + ν(G)

4.2 Finite Projective Geometry

With V (n+1, q) denoting the vector space of rank n+1 over the Galois field GF (q), we derive the
projective space PG(n, q) whose geometry consists of points, lines, planes, and up to hyperplanes
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are the subspaces of V (n + 1, q) of rank 1 to n. The dimension of PG(n, q) is thus one less than
the rank of V (n+ 1, q).

Moreover, projective planes have the following self-dual incidence structure of points and lines:

• Every two points are incident to a unique line;

• Every two lines are incident to a unique point;

• There are four points, no three collinear.

The following proposition informs some of the later research questions:

Theorem 10. Every point in the projective plane is incident with a constant n+1 lines, and dually
every line is incident with n+1 points.

Proof. If P is a point not incident with a line l, then the number of points indicent with l will be
equal to the number of lines incident with P. Furthermore, since for each four points such that no
three are collinear, there is a point Q 6= P that is not incident with l.

The number of lines that are incident with Q will be equal to the number of points incident
with l, which is equal to P . Since the points P and Q are arbitrary, it follows that every point is
incident with a constant number of lines.

Another useful observation is the following theorem, whose proof is useful for studying the
incidence matrices of finite projective geometries:

Theorem 11. Let Q ∈ PG(n, q) be a point. Then PG(n, q)/Q = PQ is a projective space of
dimension d-1.

Proof. It suffices to check that PQ is isomorphic to a hyperplane H such that Q ./ H does not
hold. Certainly, such an H exists. Consider extending the basis of PG(n, q) by Q, e.g. suppose
that {Q,P1, . . . , Pn} is a basis of PG(n, q). Then H is the hyperplane spanned by P1, . . . , Pn, with
dimension n-1 since Q is in the basis, and bases are minimal spanning sets.

In constructing an isomorphism between H and PQ, we define f from points p and lines λ of
PQ to the points and lines of H by

p 7→ p ∩H

and
λ 7→ λ ∩H.

In order to show that f is an isomorphism, we must show that this f is bijective and preserves the
incidence structure.

First, we show that this preserves the geometry. Since the points of PQ are lines of PG(n, q)
that are incident with Q, and the lines of PQ are planes that are incident to Q, if p is a point and
λ is a line in PQ, then

p ⊂ λ ⇐⇒ p ∩H ⊆ λ ∩H ⇐⇒ f(p) ⊆ f(λ).
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Now to see that f is bijective, we first show injectivity. If r, s ∈ PQ are lines through Q, and if
both intersect H at the same point X, then since they have both Q and X in common, and X ∈ H
and Q /∈ H, these lines must agree. Similarly for lines. Hence, by the properties of incidence
geometry, this map is injective.

That it is surjective follows by supposing that X ∈ H. It follows that the line QX is a point in
PQ which maps to it. If λ ∈ H is a line, then the plane in PG(n, q) defined by Q and the line λ is
also a line of PQ which maps to λ. Thus f is surjective.

4.3 Real Algebraic Geometry

The fundamental property of real algebraic geometries worth mentioning is that of o-minimality;
the main feature of such structures allow for a tame topology. Formally

The connection between algebra and geometry sketched above is the bedrock on which algebraic
statistics has been built. Specifically, real algebraic geometry

Definition 8. We say that a structured sequence (Sn)ω on a nonempty dense linear ordering M is
o-minimal if

• Each Sn forms a Boolean algebra of subsets of Mn;

• if A ∈ Sn implies that M × A and A×M are in Sn+1;

• if {(x1, . . . , xn) ∈Mn | x1 = xn} ∈ Sn;

• if A ∈ Sn+1 and p : Mn+1 → Mn is a projection on the map of the first n coordinates, then
p(A) ∈ Sn;

• {(x, y) ∈M2 : x < y} ∈ S2;

• the sets of S1 are precisely the finite unions of intervals and points in M .

These Sn are the semialgebraic subsets of Rn whenever M = R. The geometry of these sets
comes into play by noting that Sn are Boolean subalgebras of P(Rn). The stability under boolean
operations of each Sn are why these are a natural space in which to embed logical arguments. The
most important feature of the topology of real algebraic geometry, one that is relevant for the tasks
of learning and algebraic statistics, is that in the topologies on RN generated by open boxes, every
definable set in RN has both a definable closure and interior, i.e. there is a corresponding, finite
length formula in the language (R,+,×, 0, 1, <), and these formula are the corresponding objects
that we’re trying to identify with our various embeddings.

The connection between algebra and geometry sketched above is the bedrock on which algebraic
statistics has been built. In particular, many important complexity results rely on the embeddings
of finite geometric spaces into exceedingly high real dimensional spaces, and the nature of these
embeddings has certain logical limitations imposed upon them by the o-minimality.
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4.4 Stabbing Numbers

As of yet, there is no efficient algorithm for efficiently computing the sign rank. However, there
is an efficient algorithm to approximate the sign rank that makes use of the following concept:

Definition 9. Let V be a set. The pair u, v ∈ V is crossed by a vector c ∈ {−,+}V if

c(v) 6= c(u).

Let T be a tree with vertex set V = [N ] and edge set E. We let S be a V × [N ] sign matrix.
The stabbing number of T in S is the largest number of edges in T that are crossed by the same
column of S.

One relevant example of stabbing numbers is the following:
Example: Given V , if T is a path, then T defines a permutation on V and the stabbing number

of T is the largest number of sign changes among all columns with respect to this order.
In general, the stabbing number of G, denoted by ψ(()G), is the maximum number of times

any line l will intersect (stab) the structure. A common optimization problem involving stabbing
numbers is set up as follows: given a set P ⊂ R2 such that |P | = n < ∞, and a specification of a
type of geometric structure G constructed on the points P , we have an objective function

min
G∈G

max
l∈L(R2)

|{e ∈ E : e ./ l}|

where e ./ l is the relation that e and l intersect, and L(R2) is the set of lines in R2.
A lower bound for the solution to this problem derived from a heuristic based on shattering is

described as follows: If we let L ⊂ L(R2) and FrakA(L′) be an arrangement induced by L, and
let f be any face of FrakA(L). Further suppose that the number of points in P lying inside f is
at most 1 (i.e. L shatters P ). Now we consider the edges of any geometric network G. Since L
shatters P, each e ∈ G will be stabbed by one edge of L.

The pigeonhole principle implies that there is a line l ∈ L such that |l ∩ D| ≤ bn−1
|L| c, where

n − 1 are the numbers of edges in D. Although the problem of finding the minimum shattering
set is NP-complete, a lower bound can be found by greedily selecting lines from G′, such that the
greedy choice is to select a line separating as many pairs of points in P that are still not separated
by previously selected lines. The resulting set will be a shattering set.

In general, geometric structures with low stabbing numbers arise as solutions to many compu-
tational geometry problems, such as instances of implicit point location or polygon containment.
In fact the complexity of finding a spanning tree of least stabbing number is one of the original 30
questions in the ”Open Problems Project” list in computational geometry. Fekete,L\”ubbecke, and
Meijer showed the NP-hardness of stusing general proof techniques.

4.5 Approximating Sign Rank

Alon et al. provide an efficient algorithm to approximate sign rank by extending an efficient
algorithm from Welzl. This algorithm in turn depends upon properties of stabbing numbers and
some results bounding L1 sphere packing, and ε separated subspaces.
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4.5.1 Preliminary Theoretical Results

Before proceeding with our analysis of Alon et al.ia’s approximating algorithm, we need the
following:

Definition 10. For u,v ∈ {0, 1}n, define

ρ(u,v) =
1

n

∑
i∈[n]

|ui − vi|.

Then for any X ⊂ {0, 1}n and any ε > 0, X is ε -separated if for all distinct u,v ∈ X

ρ(u,v) ≥ ε.

Furthermore, the ε -packing number for any such X, which we denote by π(ε,X), is the
cardinality of the largest ε separated subset of X.

We use the packing numbers to precisely describe the cardinality of sets with disjoint L1 balls
of radius ε. Specifically, for any integer m, π(2m+1

n
, V ) describes the largest set of disjoint L1 balls

with radius 2m+1
n

contained in V . The approximating algorithm relies on the following result of
Haussler which bounds the L1 sphere packing numbers for spaces V with arbitrary VC dimension
d.

Theorem 12. If V is a space with VCdim(V ) = d, and if ε = k
n

for k ∈ [n], then

π(ε, V ) ≤ e(d+ 1)

(
2e(n+ 1)

k + 2d+ 2

)d

≤ e(d+ 1)

(
2e

ε

)d

In turn, in order to prove this result, we need the following three lemmas:

Lemma 2. Let E be the set of all pairs of (u,v) for u,v ∈ V such that ρ(u,v) = 1
n

. Then

d ≥
|E|
|V |

.

which is used to prove

Lemma 3. For any probability distribution D on V , then∑
i∈[n]

Var(Vi | V1, . . . , Vi−1, Vi+1, . . . , Vn) =
∑
i∈[n]

Var(Vi | V̌i) ≤ d.

and the following probability result

Lemma 4. Suppose that V ⊂ {0, 1}n is ε separated. Let P be the uniform distribution on V . Then
for any m ∈ [n], and any sequence I = (i1, ..., sim−1) of distinct indices in [n] and with im drawn
uniformly at random from the remaining n−m+ 1 indices, we have

E[Var(Vim|V̌im)] ≥
εn

2(n−m+ 1)

(
1−
|V|I |
|V |

)
.
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We now sequentially prove the lemmas, before proving the Haussler’s theorem.

Proof. (of Lemma 1) For all v ∈ V , and all i ∈ [n], with v̂i denoting the vector of v with the ith

entry set to 0, if v̂i /∈ V and vi = 1, we let the shift vector Si,V (v) = v̂i, and otherwise, let Si,V (v).
In general, we denote the shift of V on index i,

Si(V ) := {Si,V (v) | v ∈ V }.

Given V , we may repeatedly shift V until no more non-trivial shifts are possible; non-trivial
shifting terminates in finite time since each non-trivial shift reduces the total number of 1 in the
vectors of V.

We now check the following for Si(E), where E is the set of edges in the subgraph of the n-cube
induced by Si(V ):

• |Si(V )| = |V |;

• |Si(E)| ≥ |E|;

• for all index sets I, if Si(V ) shatters I, then I is shattered by V , whence VCdim(Si(V )) ≤
VCdim(V ).

The first bullet follows immediately (as no shifts occurs, so the sets are identical).
The second bullet is shown by mapping the edges bijectively to the edges of Si(E). Suppose

(u,v ∈ E. If neither vector of this edge shifts, this edge is not shifted, so it is mapped to itself. If
both vectors of this edge are shifted, then this edge is mapped to the edge (Si,V (u), Si,V (v)). Finally,
without loss of generality, if u is shifted, but v is not, then they must differ on some index j 6= i,
and ui = vi = 1. Since v is not shifted, v̂i ∈ V , from which (Si,V (u), v̂i) ∈ Si(E). Thus other case.
Hence we have constructed a bijective map.

The third bullet follows by supposing that a sequence I of k indices is shatted by Si(V ). If i /∈ I,
then since V|I = Si(V )|I , I is also shattered by V . If i ∈ I, then we may assume that i = 1 and
suppose that I = [k] regarded as a sequence.

Since I is shattered by Si(V ), it follows that for every u ∈ {0, 1}k we have a v ∈ Si(V ) that
agrees with u for j ∈ [k]. Since v ∈ Si(V ), it has not been shifted, and thus if u1 = 1, then
v = v̂1 ∈ V . This implies that I is shattered by V .

We then repeatedly shift V until no more non-trivial shifts are possible, obtaining a set W such
that Si(W ) = W for all i ∈ [n]. Let F be the set of edges in the subgraph of the n-cube induced by
W. It follows by the three claims above that |W | = |V |, |E| ≤ |F |, and VCdim(W ) ≤ d.

We may partially order u,v by the condition u ≤ v if ui ≤ vi for all i ∈ [n]. By induction, we
see that the W attained above is closed downward on this partially ordering, i.e. if v ∈ W then if
u ≤ v, then u ∈ W .

If v ∈ W and u ≤ v, and u differs from v only on one index, then since no other non-trivial
shifts are possible, u ∈ W . We then proceed by induction.
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Hence, if v ∈ W , then W shatters the set of indices i for which vi = 1. We then find that since
VCdim(W ) ≤ d, no vector in W can contain more than d ones, from which

|W | = |W | ≤
d∑
i=0

(
n

i

)
and since a vector in {0, 1}n with at most d ones can have n-cube edges to at most d vectors with
less ones,

|E|
|V |
≤
|F |
|W |
≤ d.

Proof. (of Lemma 2) We recall that the conditional variance of a Bernoulli random variable Bm

given B1, . . . , Bm−1 is defined by

Var(Bm|B1, . . . , Bm−1) =
∑

v∈{0,1}m−1

Pr(v) Pr(Bm = 1|v) = (1− Pr(Bm = 1|v)).

Since we may view V as a vector-valued rnadom variable, we may treat the ith component of the
random variable as correlated Bernoulli random variables.

We let E be the set of edges of the subgraph of the n-cube induced by V as in the earlier proof.
We now consider any subgraph (V ′, E ′) of (V,E) where E ′ is the set of induced edges, i.e. the set of

all edges in E between vectors in V ′. By the previous lemma, the density of the subgraph,
|E ′|
|V ′|

, is

at most d. We can orient the edges of E such that for all v ∈ V , the number of edges in E directed
away from v is at most the maximum desnity of any subgraph by Hall’s theorem. Specifically,
since d is the maximum possible density, we orient the edges of (V,E) so that the number of edges
directed away from v, denoted o(v) is at most d, and for each edge e = (u,v), we let t(e) denote
the vector in the pair from which e is directed away.

Now we find that since

Var(Vi|V̌i) =
∑

(u,v)∈Ei

(Pr(u) + Pr(v))
Pr(u)

(Pr(u) + Pr(v))

Pr(v)

(P (u) + Pr(v))

=
∑

(u,v)∈Ei

Pr(u) Pr(v)

(Pr(u) + Pr(v))

we have ∑
i∈[n]

Var(Vi|V̌i) =
∑

(u,v)∈E

Pr(u) Pr(v)

(Pr(u) + Pr(v))
.

13



With this identity, since for any x, y ≥ 0, xy ≤ (x+ y) min(x, y),∑
i∈[n]

Var(Vi|V̌i) ≤
∑

(u,v)∈E

min(Pr(u),Pr(v))

≤
∑
e∈E

P (t(e))

≤
∑
v∈V

Pr(v)o(v)

≤ d
∑
v∈V

Pr(v)

= d.

Proof. (of Lemma 3) This is a straightforward calculation

E[Var(Vim|V̌im)] =
∑
j∈[M ]

Pr(Cj)E[Var(Vim |v ∈ Cj)]

≥
∑
j∈[M ]

Nj

N

εn

2(n−m+ 1)

(
1− 1

Nj

)

=
εn

2(n−m+ 1)

(
1− M

N

)
where we define M ,Ci, and Ni as follows:

First, define an equivalence relation on V such that two vectors agree if they have the same
values on all indices in I. This partitions V into M = |V|I | equivalence classes which we denote by
C1, . . . , CM . Further, we let Ni = |Ci| and set N = |V |. First, it is clear that Ci are ε separated.
Secondly, the inequalities follow by noting that in each equivalence class, for the additional index
im selected at random from the remaining n−m+1 indices, and any two vectors selected uniformly
and at random with replacement from Ci, if the vectors are not the same, then they must differ on
at least εn of the remaining n − m + 1 indices, whence the probability that their im differs is at

least
εn

n−m+ 1
times the probability that the vectors differ, eg.

εn(1− 1
Nj

)

n−m+ 1
.

It follows that

E[Var(Vim|v ∈ Cj)] ≥
εn

2(n−m+ 1)

(
1− 1

Nj

)
since the variance of a Bernoulli random variable is half the probability that the value of the
random variable differs on two independent trials. This provides an accounting of all the steps in
the calculation.

Armed with these three lemmas, we can provide a proof of Haussler’s theorem:
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Proof. Without loss of generality, assume that V is ε-separated. We obtain an uppon bound on
|V | and let P be the uniform distribution on V . Set k = εn. We may assume that k ≥ 3, since
otherwise Sauer’s lemma can be used to give an upper bound which is less than the upper bound
of the theorem we’re currently proving.

Choose m = d
(2d+ 2)(n+ 1)

k + 2d+ 2
e indices uniformly at random without replacement from [n]. Set

γ = E[
∑
j∈[m]

Var(Vij |V̌ij)].

Now we project V onto our randomly assembled index I with the induced probability distribution
on V|I attained by setting Pr|I(u1, . . . , um) = Pr{v ∈ V |midvij = uj, j ∈ [m]}. Since this projection
does not alter the conditional variances, we find by the second lemma that γ ≤ d.

Next, we find that by the linearity and symmetry of expectations operator

γ = mE[Var(Vim |V̌im ].

Then, our third lemma shows that

γ ≤ m

(
k

2(n−m+ 1)

)(
1−

V|(i1,...,im−1

|V |

)
.

Finally, since

(|V|(i1,...,im−1)| ≤

(
e(m− 1)

d

)d

by Sauer’s lemma, we have

γ ≥ m

(
k

2(n−m+ 1)

)1−

(
e(m− 1)

d

)d

|V |

 .

Since we have d ≥ γ from above, we now rearrange these terms to find

|V | ≤
( e(m−1)

d
)d

1− 2d (n−m+1)
km

whenever 2d(n−m+1)
km

< 1. Since m− 1 ≤ (2d+2)(n+1)
k+2d+2

, we then find

(
e(m− 1)

d
)d ≤

((e
d

) (2d+ 2)(n+ 1)

k + 2d+ 2

)d

≤ e ()d .
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Furthermore,

2d(n−m+ 1)

km
≤

(2d(n+ 1− (2d+ 2)(n+ 1))/(k + 2d+ 2)

(k(2d+ 2)(n+ 1))/(k + 2d+ 2)
=

d

d+ 1

so that
1

1− 2d (n−m+1)
km

≤
1

1− d
d+1

≤ d+ 1.

Thus we find

|V | ≤ e(d+ 1)

(
2e(n+ 1)

k + 2d+ 2

)d

.

Mitchell & Packer have provided a heuristic to compute the lower bounds on the stabbing
number by finding a shattering set. In general, stabbing problems are NP-hard, although Welzl
(and later Haussler) has given an efficient algorithm for computing a path T with a low stabbing
number.

Theorem 13. There exists a polynomial time algorithm such that given V × [N ] sign matrix S
with |V | = N , the algorithm outputs a path on V with stabbing number at most 200N1−1/d, where
d = V C(S).

Alon et al. build off of this algorithm to show the following:

Theorem 14. There exists a polynomial time algorithm that approximates the sign rank of a given
N by N matrix up to a multiplicative factor of cṄ/ logN , where c > 0 is a universal constant.

4.5.2 The Algorithm

The algorithm in the paper used to approximate sign rank runs Welzl’s algorithm on S, yields
a permutation of S with a low stabbing number, and then outputing the maximum number of sign
changes among all columns of S with respect to this permutation plus one, denoted as σ.

Welzl’s algorithm for producing a tree T runs as follows:

• If d = 1 then there is a column with at most 2 sign changes with respect to any order on V .
Find this column in S, remove it, denoting the reduced matrix by S ′. Recursively find a path
T for S ′, and output this T .

• Otherwise, if d > 1 run the following

1. F0 ← ∅

2. p1 ← 1/N

3. for i ← 1 to N-1 do
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4. Choose edge ei = (h(ei), t(ei)) from S not in Fi−1 and that does not close a cycle in
Fi−1 such that pi({j ∈ [N ] | Sσ(ei),j 6= Sτ(ei),j}) is minimized among all possible ei

5. Fi ← Fi−1ei

6. for j← 1 to N do

7. If ei crosses column j then

8. pi+1(j)← 2pi(j)
1+pi({j∈[N ]|Sσ(ei),j 6=Sτ(ei),j})

(double the relative mass of each column

crossed by the edge ei)

9. else pi+1(j)← pi(j)
1+pi({j∈[N ]|Sh(ei),j 6=St(ei),j})

10. Construct v1, v2, . . . , v2N−1 by doubling every edge in FN−1 (this is an Eulerian path in the
graph)

11. Set S ′ to be the (2N−1)×N matrix by sending row vi in S to be the ith row for all i ∈ [2N−1];

12. Set T by leaving a single copy of each row of S.

The first two steps set up our algorithm; steps 3 to 9 iteratively construct forests F1, . . . , FN−1

where each forest Fi has exactly i edges; steps 10-12 transform FN−1 into a tree T . Step 4 chooses an
edge of minimum probability mass of the columns crossed by the edges not in Fi−1 and which would
not make Fi−1 as cycle. Step 5 updates our forest, and steps 6-9 iteratively update the probability
distributions.

4.5.3 Analysis of the Algorithm

For any j column in S with k edges crossing j, we have

pN(j) =
2k

N

1∏
i∈[N−1]

(1 + xi)

with xi = pi({j ∈ [N ] | Sh(ei),j 6= St(ei),j}).
We upper bound the k in this inequality by noting that from Haussler’s theorem, since the

number of distinct rows is M, there must be two distinct rows of distance pi at most 4e2M−1/d.
Since there are N-i connected components in Fi, we pick one row from each component (N−i rows).
Thus, there are two rows with distance at most 4e2M−1/d = 4e2(N − i)−1/d. Since the weight of
each pair is equal to the pi distance between the pair, and since ei was chosen to have minimum
weight, it follows that xi ≤ 4e2(N − i)−1/d.
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Finally, since pN(j) ≤ 1 and d > 1, we have

k ≤ logN +
∑

i∈[N−1]

log(1 + xi)

≤ log(N) + 2(
∑

i∈[N−1]

ln(1 + xi)

≤ log(N) + 2(
∑

i∈[N−1]

xi)

≤ log(N) + 8e2N1−1/d ≤ 100N1−1/d

Thus we find that the path output by the algorithm has stabbing number at most 200N1−1/D.
Since an earlier lemma shows that for any sign matrix S, the sign rank of S is bounded above by
the number of sign changes plus 1, i.e. bounded above by σ, and sign rank is at least d, we have a
guarantee on Welzl’s algorithm

s+ 1

signrank(S)
≤ O(

N1−1/d

signrank(S)
) ≤ O(

N1−1/d

d
).

5 Results

5.1 When is Sign Rank not equal to Dual Sign Rank?

Alon et al. (2016) claim that sign rank and dual sign rank are not the same. This makes sense
since we have to fix the columns we choose for dual sign rank and we have more flexibility for sign
rank. Upon examining some low-dimensional cases (see Preliminaries section), it seemed that the
two were often equal. So, we began by trying to come up with a matrix that had a higher sign rank
than dual sign rank. In order to do this we need to exploit the fact that with sign rank you need
to look at the entire underlying matrix and with dual sign rank you fix the specific columns.

Claim 1. Let M =


−1 1 −1 −1
−1 1 −1 1
1 −1 −1 −1
−1 −1 −1 −1

 . Then signrank(M) = 3 and dualsignrank(M) = 2.

Proof. First we need to check the dual sign rank. Clearly it is at least two since each two columns
of an underlying matrix M ′ would have to be linearly independent since none of columns are the
same or multiples of -1 of each other. This means, no matter which positive non-zero values you
replace the 1’s with, no two columns can be linearly dependent. Moreover, given any subset of three
columns, one is necessarily a linear combination of the other two in the optimal underlying matrix.
For example, take the first three columns. We could have an underlying matrix with the first three

columns


−2
−2
1
−1

2

,


1
1
−2
−1

2

, and


−1
−1
−1
−1

, in which case the sum of the first two equals the third. The
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other three subsets of three columns yield a similar result. Therefore, for each instance when we fix
any three columns, there exists an underlying matrix such that we can always eliminate one. Hence
the dual sign rank is 2.

Next we need to check that the sign rank is three. Since, as shown above, columns 1, 2, and 3
are not linearly independent for some underlying matrix, we know M does not have full rank. In
other words, signrank(M) ≤ 3. Additionally, since there does not exist an a, b, c, d for which any
of the following matrices:

has rank less than 3 (even with tweaking, i.e. making negative numbers more negative or
positive numbers more positive without changing the sign of numbers in the column that is a linear
combination of the other two; this is easily verified), we know that there must not be an underlying
matrix with rank less than three. Hence signrank(M) = 3.

Therefore we found a matrix whose sign rank and dual sign rank were different. In identifying
this, it helped us understand the subtle difference between sign rank and dual sign rank.

5.2 Equalities

Alon, Moran, and Yehudayoff provided an S such that DSR(S) = SR(S). The example is the
2n × 2n disjointness matrix DISJ . The rows and columns are indexed by all subsets of [n], and
DISJx,y = 1 if and only if |x ∪ y| > 0. For this construction, both the sign rank and the dual
sign rank are identically n + 1. Concerning Proposition 3, a similar question arises: what about
examples S such that we have either VC(S) = DSR(S) or DSR(S) = 2VC(S) + 1?

Certainly something as simple as [
+1 −1
−1 +1

]
gives us VC(S) = DSR(S), as in this case both are equal to 1.

The other case, namely finding an S such that DSR(S) = 2VC(S) + 1, is more challenging.

5.3 Sign Rank Exceeding N 1/2

The Alon et al. paper gives explicit examples of N ×N sign matrices with small VC dimension
and large sign rank. However, the authors were unable to prove any having sign rank exceeding
N1/2. Certainly Forster’s theorem gets us close, showing the sign rank of any N × N Hadamard
matrix to be at least N1/2. We attempted modifications of Hadamard matrices as the classes they
provide were clearly in the right direction. That is we performed some simple tweaks to the recursive
definition, but the analysis proved intractable as recursion does not play nicely with standard linear
algebra techniques.

To clarify our interest in these constructions, begin by inspecting the lower bounds on f(N, d)
given in Theorem 5. The existence of such hypothesis classes has been proven, however explicit
examples are sought, as they could provide general analysis techniques for determining whether a
class can be embedded in half-spaces, as was mentioned in Section 1.2.

Suffering the same fate as Alon et al., we were unable to provide a case whose sign rank exceeds
N1/2. It appears, indeed, that a new proof technique is needed.
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5.4 Minimum Sign Rank

Another direction to compare VC dimension and sign rank would be to find bounds for the
minimum possible sign rank of N × N matrices of VC dimension d, denoted by g(N, d). If VC
dimension were large, then the complexity of the columns of hypothesis classes would be great
enough to provide nontrivial minimum sign rank for those classes. In this paper f(N, d) was
analyzed by considering small VC dimension. In the analysis of this g(N, d), one would need to
consider large VC dimension.

5.5 Techniques

Forster’s argument had limitations in generating constructions of sign rank exceeding N1/2. On
the other hand, the notion of antipodally shattering was unreasonably effective in determining sign
rank, since it proves linear independence. This emphasizes that alternate characterizations of sign
rank and VC dimension are likely necessary for determining the true relationship.

5.6 Generalization to M ×N
Theorem 3 generalizes fluidly to non-square S, as the arguments involved in its proof dealt with

linear independence of general collections of vectors. No assumption related the size of the collection
to the dimension of the vectors.

In the remainder of this section we attempt to flesh out and generalize the proof of Theorem 15.

Theorem 15. For every fixed d ≥ 2,

f(N, d) ≤ O(N1− 1
d ).

In the paper, this theorem was only proven for N ×N matrices. We will attempt to generalize
this result to N ×M matrices. To prove this theorem, we will need two Lemmas.

Lemma 5 ( [9]). For any sign matrix S, sign− rank(S) ≤ SC∗(S) + 1.

Note that this lemma was stated in a paper by Noga, but not proven anywhere [9].
Proof Idea Suppose not. Then sign − rank(S) > SC∗(S) + 1. Suppose it had sign rank k.

This means that some underlying matrix has rank k. Now somehow relate the rank to the need for
things to alternate.

Lemma 6. Let S be a sign matrix with N rows that satisfies the primal shatter function g(t) = ctd

for some constant c ≥ 0 and d ≥ 1. Then SC∗(S) ≤ O(N1− 1
d ).

Proof. (Generalized proof of Theorem 15) Let S be an N ×M sign matrix of VC dimension d > 1.
By Sauer’s lemma, it satisfies the primal shattering function g(t) = td. Hence, by Lemma 6,

SC∗(S) ≤ O(max{M,N}1− 1
d ). Therefore, by Lemma 5, sign − rank(S) ≤ O(max{M,N}1− 1

d ),
which is the generalized version of the theorem.
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Note: We can probably do better. We can probably do sign − rank(S) ≤ O(min{M,N}1− 1
d ),

since somehow rank is bounded by the minimum dimension, not the maximum dimension, but it is
safe and clean to use the max. Moreover, we can likely apply this principal of using the minimal (or
maximal) dimension to the other results in this paper, as the authors suggested in their conclusion.
Like in this case, most of the underlying Lemmas are based on geometric or linear algebraic facts
that can be generalized to non-square matrices, making this trick possible.

5.7 Geometric Results, Attempts, and Ideas

Alon et al. present an efficient algorithm for approximating the sign rank. The underlying idea
of their algorithm is motivated by the problem of determining if the sign rank of an N by N sign
matrix S is at most k.

This problem in turn reduces to showing whether a system of real polynomial inequalities is
satisfiable, and so the problem belongs to ∃R. Turning towards a geometric perspective, this
problem concerns whether a given combinatorial arrangement of pseudo-lines can be realized by
an arrangement of lines. This problem has interesting complexity behavior; in the case of k=2
the problem is in P, while the problem of k=3 is ∃R -complete. Continuing with a geometric
perspective, we remind the reader that while there is an efficient approximating algorithm that also
efficiently finds a low enough stabbing number, in general finding the minimum stabbing number
will be NP-complete. Since stabbing numbers are used to find the number of sign changes, and thus
upper bound of sign rank, it is worth continuing to investigate the connection between sign rank
and stabbing numbers.

One direction that was considered (admittedly without much progress) was considering a parti-
tion of {−,+}N×N into blogNc+1 classes corresponding to their VC dimension (when VC dimension
is 0, then we have an all + or all - matrix).

Let us denote by SN = {−,+}N×N/ ∼, and let us denote each element in this equivalence class
by d∼ to indicate the respective VC-dimension. The results of Alon et alia provide bounds on the
expected sign-rank of each element of d∼. However, it is not known what the average sign rank of
within each d∼ is in general, let alone the distribution of sign-rank within each d∼.

Several approaches to relate this problem to finding an average type were attempted without
much success. One intuition was to try and study the average type of an indiscernible sequence
c̄ = (ci) over the column possible column spaces {−,+}N , defined by

Av(C̄/{−,+}N) := {φ(x, a) ∈ L({−,+}N) ||= φ(ci, a) for cofinitely many i}

where L may be taken to be (R, 0, 1,+,×, <), L({−,+}N) the language extended to include the
sign vectors as constants, and φ(x, a) are formula in those terms. In particular, this intuition was
motivated by the connection between indiscernibles and the VC dimension of a partitioned formula.

In line with this intuition, a second approach to this problem using the tools of model theories was
to study the Keisler measures defined by the d possible subclasses of d∼, each generated a formula
describing the precise number of distinct d-tuple of columns of elements of d∼ that shatter. These
Keisler measures would be defined by the defining formula of said subclasses, χd(S) for S ∈ d∼, and
then uniquely extended to a regular countable Borel probability measure on the space of types over
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{−,+}N×N , e.g. our Keisler measures would be [χd(S)] inside the Stone space of complete types
over {−,+}N×N . However, this research halted once it was realized that the requisite theory of sign
matrices, which is realized inside our structure described above, must be shown to be stable in the
first place.

6 Conclusion

Throughout our research, we came up with some further things to investigate. For one, we
believe that the sign rank and the dual sign rank are the same for all matrices of size less than or
equal to 3× 3. We exhausted some examples, but didn’t come up with a formal proof.

The motivation for studying Keisler measures and average types over an indiscernible sequences
stems from the geometric character of such analysis, and it’s generalizing of algebraic notions
of linear independence of vector spaces and algebraic independence of algebraically closed fields.
Moreover, such an approach is fundamentally combinatorial in nature. Establishing stability results
on the relevant formal theories of sign matrices would greatly inform the study of both sign rank
as well as of stabbing numbers.

Many open questions still remain. A construction remains to be found (due to time constraints)
that satisfies DSR(S) = 2VC(S) + 1. Inquiries into the minimum sign rank for a given N × N
matrix of VC dimension d would likely yield further insight into sign rank versus VC dimension.
Lastly, an explicit hypothesis set with sign rank exceeding N1/2 and small VC dimension has not
been found. Such a construction would be meaningful in reaching an answer to the embeddibility
question.
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