An Introduction to Logic Programming by way of
Answer Set Programming

Alexander Berenbeim

November 30, 2015

What Is The ASP paradigm?

> Perhaps the simplest motivation for Answer Set Programming are
problems | dealing with search, diagnosis, information integration,
routing & scheduling, knowledge management, etc., where the
reasoning occurs with modeling constraints, or modeling preferences,
or incomplete information, etc.

» This leads to the Answer Set Programming paradigm:

1. Encode our problem [as a logic program P, such that the solutions
of | will be models of P;

2. Compute some models M of P using an AS solver, such as d1v or
Prolog;

3. Extract from M a solution for /.

> In effect, this switches the onus on the programmer from stating
how to solve the problem / to how to state the problem /.

> ASP is rooted strongly logic programming, particularly in the fields
of Knowledge Representation and Reasoning with formalisms aimed
at belief sets, commonsense reasoning, defeasible reasoning,
preferences and priorities.

The Formal Motivation for Answer Sets

» Consider the following metalogical statement :
(x)If ¢ F 3x, ¢, then there is a term t such that ¢ b/, @

> (%) says an existential proposition under an assumption ¢, ¢ will
have a constructible solution t.

> (%) is almost always not true. However it is true for sets of
universal Horn formulae, which are of central importance in the
field of logic programming.

» We may think of logic programs P as being built from simple

constituent blocks that syntactically correspond to the language of
predicate calculus, where constants correspond to objects and
variables correspond to subjects related to one another by
predicates through atoms, the sum total of which describe the
scenario being modeled.

Logic Programming Primer: Horn Logic Programming

> A positive logic program P is a finite set of clauses called rules of
the form
a < bl, ey bm

where a, b; are atoms of a first-order language L.

» By convention, we call a the head of the rule and b, ..., b, the
body of the rule, while a rule with an empty body is called a fact.
Rules without variables are ground while those with variables are
non-ground.

» Rules do not strictly correspond to the procedural scheme of
imperative languages, as a variable X in an imperative language
associates a single valued to it, standing in for a named storage cell,
while in a logic program, as a declarative construct, X reads as any
X having a certain property.

Logic Programming Primer: Proof Calculi
Universal Horn formulae are derived using the following calculus:

1. (Rules)

(- v y - \/(p) (n € N,¢1, ..., ¢n, ¢ atomic)
=g V-V =,

As in classical logic, ¢ < ©vo,...,on =@V 7o V 7p1 V - -V 2p,.
2. (Goals)

(n €N, ¢p,...,pn atomic)
(7o V-V)
3. (Conjunction)
Y
(P A Y)
4. (Universal Extension)
4
Vx, @

5. (Selective Linear Definite (SLD) resolution)

P05 Piy e Pm @ Yo,...,Yn
<;§007"'a¢03"~7wm7“'730n

(¢ unifies with ¢;)

Logic Programming Primer: Model Semantics

Let P be a logic program.

Definition

A Herbrand universe of P, denoted by HU(P), consists of the set
of all terms formed by the language Lp.

A Herbrand base of P, denoted by HB(P), consists of all ground
atoms formed from predicates in P and terms in HU(P), such that an
interpretation over HU(P) is simply a subset / C HB(P) may be
understood a set of of grounds atoms true in a given scenario. An
interpretation M may be a model of

1. aground clause C = a< by,..., by if {b1,..., b} L M or a e M,

2. aclause C if M |= C' for all C' € grnd(C), the set of all ground
instances of C appearing in HU(P);

3. a program P if M |= C for all clauses C € P.

Logic Programming Primer: Minimal Models

Consider the following program P
a<+b. b+ a. c.

The only model that is necessarily true for P is M = {c}. Of
course, it may be the case that M’ = {a, b, c}. If there is no model N of
P such that N C M, then M is minimal

Can you think of a program P’ where M’ is minimal?

a< b b+ c. C.

Logic Programming Primer: Minimal Model
Computation

If P is a positive logic program, then there is a single minimal model
denoted LM(P). We iteratively compute LM(P) by the immediate

consequence operator, where Tp : 2HB(P) 5 2HB(P) i defined by
I'— {a|3(a< by,...,bn) € grnd(P),{b1,...,bm} C I}

i.e. under Tp, for all founded atoms in the body of a rule r, then a
will be founded. Consider P’ from the previous slide.

T ={}. Tp = {c}. ¢ = {c.b}.

T3 ={c,b,a}. To =T3,n>3.

Negation in Logic Programs

» We extend positive logic programs to normal logic programs by
adding a notion of negation different from negation in classical logic,
pragmatically interpreted as Negation as failure with falsity
denoted by fail, and where one considers nota(-) to be true if no
corresponding positive literal a(-) can be finitely proved through SLD
resolution.

> For example, consider the following program P :
man(dilbert)

single(X) < student(X),nothusband
husband(X) + fail

» The Prolog query ? — single(X) will return X = dilbert, since
husband(dilbert) cannot be proved for P.

Negation in Logic Programs: Dependency Graphs

» Now instead of P, consider the program Q
man(dilbert)

single(X) <« student(X),nothusband(X)
husband(X) < man(X),notsingle(X)

» SLD resolution algorithms will loop forever, though we get around
this by introducing and examining the order of evaluation of rules. A
dependency graph of Q, dep(Q) = (Vg, Eg) has its set of nodes
Vo correspond to the set of all predicates p, g in Q, and the pair
(p, q) is in Eq iff there is a rule r such that for the pairs of vertices
P, q, p is the head of the rule r and q is in the body of a rule r. If
the literals are positive, then by convention this is rather confusingly
denoted by p — q. If a literal is under negation, convention dictates
we denote this by x(p, q), or (p —=* q).

Negation in Logic Programs: Stratification

» Dependency graphs allow us to check whether a program can be
stratified.

> A stratification of a program P is a partitioning ¥ = {S; | i € [n]}
of pred(P), the set of predicate names occurring in a program P
such that

1. if pe Si,q €S, and p — q are in dep(P), then i > j;
2. ifp€ Si,q € Sjand p =" g is in dep(P), then i > j

> A stratification X of length k > 1 specifies an evaluation order for
the predicates in a logic program P; this can be computed by a
series of iterative least models, denoted Mp 5:
» With Ps, denoting the subset of rules of P whose head belongs to S;,
and HB(Ps,)* = | {p(t) € HB(P) | p € S;}, the iterative least
J€lil
model M; C HB(P) with i € [k] is defined as
1. M least model of Ps;;
2. For i > 1, M is the least subset of HB(P) such that M; = Ps, and
M; N HB(PS,-_l)* =M_1N HB(PS,-_l)*-

Negation in Logic Programs: Example

Recalling program @, we have the following dependency graph

single —— man

husband — married

which stratifies as

So = {}
S1 = {man, married}
Sy = {husband}

Sz = {single}

Negation in Logic Programs: Unstratified Negation

» This can break down though, as not all models can be stratified. In
fact, P’ from earlier is not stratified, as more than one predicates are
mutually defined over not, so that there are two mutually exclusive
minimal models,

M = {man(dilbert), single(dilbert)}

N = {man(dilbert), husband(dilbert)}

that is, we have two different answer sets to the query

» When faced with multiple plausible models, we are faced with the
problem of specifying a preferred model, denoted PM(P).

» The most commonly investigated notion of preferred model are
stable models, which are not self-contradicting. Formally, a stable
interpretation M of P is an assumption we make, with PM C P such
that

1. rules with not a are removed in the body for each a € M,
2. literals not a are removed from all other rules.

» In other words, an interpretation of M is a stable model of P if
M = L/VI(PM)

NLP: Reasoning From Stable Models

» Now that we've introduced negation, SLD resolution is no longer a
sufficient inference rule. We rectify this situation by introducing two
different inference rules:

1. (Brave Reasoning) If M |= a for a stable model M, then an atom a
is brave a brave consequence of P, denoted P =, a

2. (Cautious Reasoning) If M = a for every stable model of P, then a
is a cautious consequence of P, denoted P |=. a.

Both [=p, ¢ are non-monotonic, as introducing further rules to P
may invalidate the conclusions.

Normal Logic Programs: Computationally Understood

» Deciding whether a given program P has a stable model is
NP — complete.

» This amounts to guessing a stable candidate M, checking in
polynomial time if M is stable by verifying that the set of unfounded
atoms in M is empty, where an unfounded atom a is the head of
some rule r such that either an atom b appears as a positive literal in
the body of r which is such that either b ¢ M or b is also unfounded,
or b appears as a negative literal in the body of r such that b € M.

» Introducing functions can make this undecidable, as we may have
models of infinite size. Consider the program F:

p(a)

p(f(X)) < p(X)

grnd(F) = {p(a), p(f(a)) < p(a), p(f(£(a))) < p(f(a)),...} is
infinite, and is the unique stable model. For non-ground programs
with function symbols, this problem becomes as difficult as the
Halting program.

Further Extending Logic Programs

» We can extend our logic programs further by considering disjunctive
rule heads or strong (classical first order negation) by considering
P with rules of the form:

aaVaV---Vag<+ by,...,by,notcy,...,notc,

where k,m,n € N and a;, bj, ¢; are atoms (or strongly negated
atoms, denoted —a;, —bj, —¢;), and stable models are the minimal
models M of a reduct PM, so that disjunctive heads may as well be
read as XOR.

» Strong negation is different from provably knowing a is false; not a
means a cannot be derived from a given body of rules, while —a
assumes that a is false by default.

» We can compile strong negation away by doing the following:

1. view —p(X) as an atom with a fresh predicate symbol;

2. add the clause NC : falsity < notfalsity, p(X), —p(X) to P, i.e
extend P to P’ and reduce from EL(D)P to (D)NLP;

3. select the stable models of P'.

The stable models of P’ will still be answers sets to P.

One Last Example of ASP

We can consider the ASP approach to the problem of computing
legal 3-colorings of a graph G = (V/, E). We store the facts of our graph
as node(n) for each n € V and edge(n, m) for each (n,m) € E. The
general specification for solutions is then

red(X) < node(X),notgreen(X),notblue(X)

green(X) < node(X),notblue(X),notred(X)
blue(X) < node(X),notred(X),notgreen(X)
with a single disjunctive rule
blue(X) V red(X) V green(x) < node(X)

The Answer Sets will correspond to all legal 3-colorings of G.

Questions?

