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Abstract

This paper is intended as a broad survey of topos theory as motivated by one of the
historical motivations for the subject: the Weil conjectures. The structure of this survey
has been guided by the goal of formally verifying the proof of the Weil conjectures.
Towards that end, this paper consists of 3 parts: Preliminaries; the Proof of the Weil
Conjectures; and Future Work.

Part I consists of three chapters whose contents touch upon the different mathemat-
ical results needed to realize a formally verified proof of the Weil conjectures. Chapter 1
provides a crash course on categorical logic, developing a connection between fibred cat-
egories and type theory, and culminating in an exposition of elementary topoi. Chapter
2 examines Grothendieck topoi and their connection to algebraic geometry and topol-
ogy, culminating in some brief commentary on describing cohomology theories from the
perspective of higher category theory. Chapter 3 surveys the many diverse mathematical
results required of a Weil cohomology theory.

Part II consists of three chapters exploring the Weil conjectures properly. Chapter
4 provides a statement of the Weil conjectures. Chapter 5 provides a proof for all the
Weil conjectures, sans the proof of the Riemann hypothesis. In its stead, Chapter 5
culminates with a fairly detailed description of the structure of the proof of the Riemann
hypothesis. Chapter 6 is a verification of the proof of the Weil conjectures for arbitrary
projective varieties.

Finally, Part III consists of a single chapter, the index and bibliography. Chapter 7
presents an outline for a future research program for realizing the goal of this paper.
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3.4 Poincaré Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Trace Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Some Brief Remarks On Lefschetz Pencils . . . . . . . . . . . . . . . . . . . . . . . . 75

II The Proof of the Weil Conjectures 79

4 The Statement of The Weil Conjectures 81

5 The Proof of the Weil Conjectures 85

5.1 Defining Nm(X0) By Expressing The Number of Rational Points In The Extension

Fqm of Fq of degree m in X0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 The Proof of the First Three Conjectures . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Betti Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.3 Poincaré Duality (The Functional Equation) . . . . . . . . . . . . . . . . . . 92

5.3 The Structure of the Proof of the Riemann Hypothesis . . . . . . . . . . . . . . . . . 96

5.3.1 H2(P1;Rn−2π∗Q`) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 H0(P1;Rnπ∗Q`) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.3 H1(P1;Rn−1π∗Q`) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 A Verification of the Weil conjectures for Pn 103

III Some Final Thoughts 109

7 Future Work 111

Index 113

Bibliography 115



0.1. FOREWORD ix

0.1 Foreword

In looking back on this project, and admitting to myself that I had been näıve about the requisite

scope, I can immediately conclude the following: mathematics research is driven in part by beautiful

accidents.1

I first encountered topos theory entirely by accident. Some time over the summer of 2010,

in the midst of preparing to take a course in category theory that fall, I happened upon a copy of

Goldblatt’s book, Topoi: A Categorial Analysis of Logic [7] at a book store in Lincoln Centre while

I was waiting for a movie to begin seating. While I had some vague goal of acquiring a copy of

Awodey’s book on the subject [2], as this was the book required for the course, I had no illusions

as to the likelihood of this acquisition occurring that day. Curiously enough, although they did not

stock Awodey’s book, they did carry Goldblatt’s book.2 Intrigued by the title alone, I picked up

the book, started reading through. As often is the case with a compelling mathematical treatise, I

lost track of the time.3 Having missed my show, I purchased the book and set off for a nearby café

to continue reading.

In many ways, this chance encounter has informed my subsequent mathematical interests. I

mention this, because my initial forays into topos theory start with Lawvere and Tierney’s work

on elementary topos theory and the topos models of intuitionistic first order logic, and not with

Grothendieck and the conjectures that informed his invention of topos theory (not to mention scheme

theory or motive theory). That Lawvere noticed that Grothendieck topoi, which as sheaves on a site

not only provided a generalisation of the notion of topological space, but in doing so, generalised

the categorical notion of sets and predicates, struck me at the time as an actual historical accident.

In my case, with the basic tools of category, I arrived at the elementary notion of a topos blithely

unaware of their historical motivation.

However, I mean more than the personally fortuitous event of finding Goldblatt’s book, and

more than Lawvere’s realization that Grothendieck had stumbled upon a profound way of conceiving

mathematical spaces when I say accident. I also mean that in a much broader sense, the motivations

1I mean more in the sense of historical, rather than logical, contingencies, although certainly those do apply.
2I suspect that this is because Goldblatt’s book explicitly discusses logic and is classified as a philosophy book,

making it more likely to be stocked by this book seller than a book on pure category theory.
3For what it’s worth, I did eventually see the film I missed, and I did not miss much.
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for these abstractions may seem entirely unrelated, that these connections are drawn up almost as if

by chance. After all, how does one get categorcial logic from sheaves on sites, and what did sheaves

on sites have to do with the Weil conjectures? The particular accident that I’m dancing around

are the ζ functions, and how the concerns of number theorists eventually led to the development of

contemporary algebraic geometry and categorical logic.

In principle, anyone with a passing familiarity with grade-school arithmetic (sums, products,

and multiplicative inverses) could describe them. Indeed, with a standard undergraduate education,

one could describe André Weil’s conjectures reasonably well. What commands attention is the sheer

volume of research that has been motivated by studying functions analogous to the form

ζ(t) =

∞∑
n=1

n−t (0.1.1)

While mathematicians had certainly been studying ζ(n) for specific n ∈ Z+ in the centuries prior

to Euler, he began the explicit study of ζ(t) as a real valued function. However, mainstream

mathematical interest in these functions can rightly be said to begin with Riemann, who extended

ζ via analytic continuation to C\{1}. Moreover, he demonstrated that there was a functional

relationship between ζ(z) and ζ(1 − z), and postulated his famous hypothesis that all zeroes of

ζ(z) such that <(z) > 0 occur when <(z) = 1
2 . Riemann, Hadamard and others used ζ(z) for

studying the distribution of prime numbers, in one sense culminating in the prime number theorem,

while Dedekind began the generalization of Riemann’s hypothesis that ultimately led to the Weil

conjectures.

The Weil conjectures themselves developed from Artin and Schmidt’s work on algebraic curves,

in particular Artin’s development of the following zeta function for algebraic curves f over finite fields

Fq:

ζ(f, t) := exp

 ∞∑
m=1

Nm(f)
tm

m

 (0.1.2)

where Nm(f) describes the number of points in the curve f(Fqm), which built off of Dedekind’s zeta

functions for Weil’s insight, and Schmidt’s work extending this to all algebraic curves over finite

fields. The Weil conjectures generalized Artin’s zeta function from curves to arbitrary non-singular,
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projective varieties. This restriction to non-singular projective varieties is important, not only

because it compactifies the space, but also because it becomes sensible to talk about differentials.

This matters, because we can legitimately focus our attention on étale maps, which abstract

the notion of local isomorphism and unramified field extensions,4 and to the attendant étale sites

and their cohomology theories. Indeed, this is where a seeming divergence between my interest in

categorical logic and where the proof of the Weil conjectures properly begins.

However, this divergence is superficial, as it was eventually found that a Weil cohomology

theory, which is contravariant functor satisfying certain axioms, would be sufficient for proving the

Weil conjectures. One such Weil cohomology theory is `-adic cohomology, an étale cohomology that

Deligne used to prove the Weil conjecture’s Riemann hypothesis analogue. The proof of the Weil

conjecture is a consequence of the action of the geometric Frobenius mapping on this cohomology

theory, as shown in an incredibly beautiful (if not maddeningly elegant) proof by induction on the

dimension of non-singular projective varieties X.5

Thus, we have here, the structure of this paper writ small. We begin by considering what is

meant by logic, before proceeding through some elementary topos to the category of sheaves on an

étale site and some corresponding cohomology theories that allow us to prove the Weil conjectures.7

If it is not yet clear, the personal motivation for this project stems from a desire to connect what I

know about topos theory and categorical logic with their historical antecedent, the Weil conjectures,

and if possible, sketch out how they can be proven within an appropriate syntactic category. To this

end, I must explicitly state that this paper is a failure.

If the paper strikes the reader as schizophrenic in its goals and its exposition, that is because

it has become so out of necessity. The single, intended throughline from elementary topoi to the

proof of the conjectures was not fully realized. There are many reasons for this decision, the first

being the pedagogical goal on my end to understand the Weil conjectures and their proof.

Of course, there were other, more quotidian, concerns about the length of the paper, which

4Not to omit a covering of a Riemann surface with no branch point, but introducing complex analysis this early
on in the Foreword strikes me as losing focus on the proverbial plot.

5Indeed, the single largest section of the earlier drafts of this paper went to towards reproducing Deligne’s proof of
the Riemann hypothesis from [5] with inspiration6 from the structure of the proof as presented in [14]. Once this paper
grew to an unjustifiable length, it was eventually excised after many supporting details were removed. Ultimately,
this author plans on releasing a series of separate (and hopefully shorter) papers to support a complete proof of this
Riemann hypothesis analogue.

7I promise the reader that the Weil conjectures will be stated.
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led to the further excision of a fairly lengthy subsection about which categories one expects to find

generalized trace formula (much of this was a summary of [15]), as well as section summarizing [3],

and the argument presented therein establishing an isomorphism between étale cohomology and

ordinary sheaf cohomology. There were further casualties of the editing process, the most prominent

being the omission of the proof of the Riemann hypothesis, leaving instead, a respectable summary

of its proof.8

While I may regard this paper as a failure, both in its long term goal of providing a formally

verified proof of the Weil conjectures, and even its more modest goal of providing a complete,

consolidated proof of the Weil conjectures, what remains is a reasonably thorough survey of the

material that in principle allows one to realize the proof of the Weil conjectures in some syntactic

category. That is, what remains are some of the preliminary steps.

8I would actually argue that it is charitable to call what was present a proof, as most of the argument consisted
of treating the specific results as black boxes, to be filled in after appropriately sifting through the relevant work in
SGAs 4, 4 1

2
, 5, and 7.
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0.2 A Note on Reading This Paper

One of the biggest challenges reading through the literature is that there is no uniform notational

standard. In one sense, this is not a bug of mathematics, but a central feature: the semantic content

of mathematics is not a consequence of the notation. That said, good, consistent notation really does

help immensely. To that end, certain decisions needed to be made so that a uniform presentation

of the material can be achieved. Below is a table matching the type setting with a corresponding

mathematical object:

Objects Description Examples

(Special) Sets Blackboard bold R, C, Q, Z`, Fq

{0, 1, 2, . . . , n} dne

Power-obect (incl. power sets) P(−) P(R), P(X)

Categories Described by small caps C,Sets,Top, ...

Topoi (Abstract)9 Boldface B,E

(Bi)-Functors (esp. sheaves) Described by mathcal F ,G,Hq(−;−)

limits / projective limits lim
←−

co-limits / direct limits lim
−→

Type theory mathtt app(s, t), fst(z)

Explicit Formula mathtt dom[X; f ]

Fibrations

E
↓
B, Γ :

Sets→

↓
Sets

Unique morphism !

Ideally, notation eliminates ambiguity. However, the categories identified by PSh(−) and Sh(−)

will need to be identified by the context.
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Chapter 1

Some Remarks On Categorical

Logic

A caveat for the reader: the subject of categorical logic is far to expansive to be covered in any

meaningful sense in a few pages. This chapter is intended to comprise a gentle introduction to the

notion that fibrations over suitable categories are intimately connected to logic. In particular, the

goal is to provide a minimal amount of exposition that would equip the reader to understand [16],

and understand how one might approach the proof of the Weil Conjectures from the perspective of

topos theory. Sadly, time and page constraints prevented a deep exposition topos theory, and so the

connections that are drawn in this chapter aim to establish that at least any bicartesian closed cate-

gory has a corresponding syntactical category with implication, conjunction and disjunction. These

connections are particularly meaningful once we begin examining topoi proper, as topoi provide for

us a rich, geometric logic. Much of this material is covered in greater detail in Chapters 1, 2, and 4

of [9]; Chapters 4 and 6 of [12]; the entirety of [13]; and [16].

3



4 CHAPTER 1. SOME REMARKS ON CATEGORICAL LOGIC

1.1 Fibrations, Signatures, and Models

1.1.1 Fibrations, Signatures and Models

The main motivation for this section is to highlight the importance of fibrations for capturing

information about slice categories, with the eventual goal of looking at sheaves over Et ↓ X where

X is either a variety or a scheme. Towards that end, the importance of a fibred point of view of

type theory will be developed first, with the aim of emphasizing that contexts are objects in the base

category of a fibration, before we define the category of signatures.

Definition 1.1. Let E and B be categories and let P : E → B. Now suppose f ∈ E(X,Y ) and

u ∈ B(I, J). We say that f is Cartesian over u provided that P(f) = u and for every g ∈ E(Z, Y )

such that there is some w ∈ B(P(Z), I) satisfying

P(g) = u ◦ w

there is a uniquely determined h ∈ E(Z,X) with f ◦ h = g.1 If f is Cartesian over P(f), then we

say f is Cartesian. If for every Y ∈ Ob E and u ∈ B(I,P(Y )), there is a Cartesian morphism

f ∈ E(X,Y ) above u, then P is a fibration. If P is a fibration, we will denote this by P :

E
↓
B.

Furthermore, given that P is a fibration, if I ∈ Ob B, the fibre category over I (or fibre)

is the category defined as follows:

objects X ∈ Ob E such that P(X) = I;

morphisms f ∈ E(X,Y ) such that P(f) = idI ∈ B(I, I).

We denote this category by EI , and by convention say that objects in EI are above I and morphisms

f are above u.

Finally, we can define a category of fibrations, Fib, as follows:

objects fibrations P
E
↓
B;

1In this regard, P∗(w) = h.
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morphisms pairs of functors (H : B → A,K : E → D) such Q(H) = K(P) with Q :

D
↓
A, and H

sending Cartesian morphisms in E to Cartesian morphisms in D.

Remark. Not surprisingly, we often refer to B as the base category and E as the total category.

Definition 1.2. Let B be a category with cartesian products.

We denote by s(B) a category whose objects are pairs (I,X) with I,X ∈ Ob B, and whose

morphisms (u, f) : (I,X) → (J, Y ) are pairs with u ∈ B(I, J) and f ∈ B(I × X,Y ), such that

composition is defined as:

(v, g) ◦ (u, f) := (v ◦ u, g ◦ 〈u ◦ π, f〉)

The simple fibration on B is denoted by

s(B)
↓
B and is derived from the projection functor s(B)→ B

given by (I,X) 7→ I and (u, f) 7→ u.2 Clearly, the fibre s(B)I over I ∈ Ob B and hence forms a

slice category, referred to as the simple slice.

Now let B be a base category with cartesian products and pullbacks, and set the total category

E to be the arrow category B→. The co-domain fibration is a fibration cod :

B→

↓
B .3 Clearly the

fibre category of I ∈ Ob B is the slice category B ↓ I, and the cartesian morphisms in B→ coincide

with pullback squares.4

Denote by Mono(B) the full subcategory of B→ whose objects are monic morphisms. The

restricted codomain fibration is similarly a fibration, as the pullback of a monic arrow along any

map is monic.

Within a fibre Mono(B)I , we define a pre-order ≤ on f : X � I and g : Y � I by

f ≤ g ⇐⇒ ∃!h ∈ B(X,Y ), ((h ◦ f) = g)

The resulting equivalence classes are called subobjects of I, and we denote this by Sub(I).5Thus,

rather remarkably, while Mono(B) is not a preorder, the fibration

Mono(B)
↓
B is a pre-order as the

2That this functor forms a fibration is clear; given any u ∈ B(I, J), there is an obvious unique map from (I, Y )→
(J, Y ), namely, (u, π2).

3Recall that cod is defined by f ∈ B(X, I) 7→ I and (u, f) 7→ u.
4Recall that morphisms in B→ are pairs (u, v) such that u ◦ f = v ◦ g.
5Crucially, Sub(I) is a poset.
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fibres are all pre-ordered categories.

Now, denote the category whose objects consist of Sub(I) by Sub(B). T From this, we derive

the fibration of subobjects of B,

Sub(B)
↓
B .

Strictly speaking, there is no difference between subobjects and monic arrows from the categor-

ical point of view. This perspective is actually quite fruitful, as the next two examples demonstrate.

Example 1.1.1. Let B be a category with finite limits, and let I ∈ Ob B. A binary relation

on I is a subobject R � I × I. In this way, we can define the category of binary relations

on B, Rel(B) as the category whose objects are these monic arrows r ∈ B(R, I × I) and whose

morphisms (R � I × I) → (S � J × J) are derived from maps u ∈ B(I, J) such that there is a

unique morphism ! : R→ S

(u× u) ◦ r = s◦!

Given that relations are monomorphisms whose target is a cartesian product, we often write r :=

〈r1, r2〉. Furthermore, in categories with cartesian products, we recover some common logical rela-

tions as follows:

reflexivity if δI = 〈idI , idI〉 factors through 〈r1, r2〉, then 〈r1, r2〉 is reflexive;

symmetry if there is a unique map such that 〈r1, r2〉 = 〈r2, r1〉 ◦!, then 〈r1, r2〉 is symmetric;

transitivity if there is a pullback T of triples,

T R

R I

r23

r1r12

r2

such that there is a unique map ! : T → R such that

T R

I × I

〈r1, r2〉t
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with t = 〈r1 ◦ r12, r2 ◦ r23〉.

If a monomorphism 〈r1, r2〉, satisfies all three of these, then it is an equivalence relation. Notably,

if the diagonal fails to factor through, but symmetry and transitivity hold, then R is a partial

equivalence relation.

Example 1.1.2. Define the category of predicates, denoted by Pred = Sub(Sets). Then as before

PredI are fibre categories over I with a poset structure. Here, the partial ordering is the familiar

⊆ ordering. In fact, each PredI corresponds to the poset category of 〈P(I),⊆〉. In particular, the

morphisms in Pred are functions u :∈ HomSets(I, J), such that i ∈ X implies u(i) ∈ Y . For each

such u, there is a corresponding substitution functor u∗ : P(J)→ P(I) in the reverse direction defined

by

(Y ⊆ J) 7→ ({i | u(i) ∈ Y } ⊆ I)

In this way, we define weakening as the case of substitution along the cartesian product π : I×J →

I, and we define contraction along the Cartesian diagonal, δ : I → I × I, with

π∗ : P(I)→ P(I × J)

by

X 7→ {(i, j) | i ∈ X, j ∈ J}

and

δ∗ : P(I × I)→ I

by

X 7→ {i ∈ I | (i, i) ∈ X}

respectively. Furthermore, we can define the predicate of equality on the cartesian product by

Eq(X) = {(i, j) ∈ I × I | i = j, i ∈ X}

or rather, as a functor Eq : Sets→ Rel by I 7→ I = {(i, i) | i ∈ I}. Further, we can define quotients
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functorially as the left adjoint to equality.

Additionally, we can define quantification functorially from P(I × j) ⇒ P(I) by the mappings

∃ : Y 7→ ∃(Y ) := {i ∈ I | ∃j ∈ J.(i, j) ∈ Y }

∀ : Y 7→ ∀(Y ) := {i ∈ I | ∀j ∈ J.(i, j) ∈ Y }

Finally, we can define comprehension as functor {−} : Sets→ Pred by (Y ⊆ J) 7→ Y , i.e.

{(Y ⊆ J)} = {j ∈ J | j ∈ Y } = Y

with ”truth” as a functor > : Sets → Pred as the suitable left-adjoint functor to comprehension,

which is defined by sending sets I to the terminal object of the fibre PredI , namely, (I ⊆ I).

This gives rise to the following adjoints:

∃ a π∗ a ∀

Eq a δ∗

> a {−}

Eq a {−}

Q a Eq

In this light, we may regard the operations of predicate logic as structures of the fibration

Pred
↓

Sets.

Remark. It bears mentioning after the previous example that there are several techniques for con-

structing new fibrations: pullbacks and composition. In particular, pullbacks of fibrations are occa-

sionally referred to as a change-of-base situation, and can be used to define the category of signa-

tures.6 This is to stress that wherever fibrations arise, one will be able to find a logic. In the next

section we will show how simple fibrations give rise to the simply typed λ-calculus. Similarly, one

6This is detailed in [9].
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can show that the co-domain fibration corresponds to dependent type theory. Much of the rest of

this paper is implicitly concerned with how the subobject fibrations describe an internal predicate

logic.

Example 1.1.3. While much of this material can be found in Part D of [11], and can be inter-

polated from elsewhere, such as [1] and [13], I’ve found that [9] has the most concise presentation

of categorical model theory from the perspective of fibrations, and in line with my goal of finding

a formally verified proof of the Weil conjectures. The following definitions are largely summarized

from Jacobs:

A signature Σ is a pair (T, F), where T is a set of types (alternately called sorts), and mapping

F : T?n × T → Sets sending every 〈σ1, . . ., σn〉 ∈ T?n and σn+1 ∈ T to a set of function symbols

F(〈σ1, . . ., σn〉 , σn+1), which take inputs of type σ1, σ2, . . . , σn and output of type σn+1.7 For each

function symbol F in F(〈σ1, . . ., σn〉 , σn+1) is said to be assigned arity σ1, σ2, . . . , σn → σn+1.

One often writes |Σ| for the underlying set of types instead of T; we will use this convention

from here on out.. If |Σ| has only one type, then the signature is single typed; otherwise, Σ is

multi-sorted.

We define Sign to be the following category:

objects signatures Σ;

morphisms (u, (fα)) : Σ → Σ′, where u : |Σ| → |Σ′| is a set function, and (fα) is a family

of functions between sets of function symbols with α indexed over all finite length pairs of

〈〈σ1, . . . , σn〉, σn+1〉 such that

F : σ1, σ2, . . . , σn → σn+1 ⇒ fα(F ) : u(σ1), . . . , u(σn)→ u(σn+1)

Clearly, we have an obvious forgetful functor Γ sending Σ to |Σ| and morphisms to their underlying

function u.

Definition 1.3. Given a signature Σ, we define the collection of terms recursively as follows:

1. if x is a variable of sort A, then x : A, ;

7For greater clarity, T?n refers to the free monoid of finite sequences of T, the Kleene star.
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2. if f : A1, . . . , An → B is a function symbol and t1 : A1, . . . , tn : An, thenf(t1, . . . , tn) : B.

Notice that we define the sort of each term A, and denote this by t : A.

Now, in order to associate terms with well-typed strings of symbols, when given a signature Σ,

we note that a |Σ|−indexed collection of sets X = (Xσ)σ∈|Σ| can be regarded as a set of variables

Xσ for each type in |Σ|, from which we can define a |Σ|-index collection of terms, (Termsτ (X))τ∈|Σ|

as follows:8

• Xτ ⊆ Termsτ (X), such that Termsτ (X) is the set of terms of type τ ;

• if F : τ1, . . . , τn → τn+1 in Σ and M1 ∈ Termsτ1(X), . . . ,Mn ∈ Termsτn(X), then

F (M1, . . . , Fm) ∈ Termsτn+1
(X)

In this way, a term is a well-typed string of variables x ∈
⋃

σ∈|Σ|
Xσ and functions F from F. From here,

we have a notion of free variable, given by FV(x) = {x} and FV(F (M1, . . . ,Mn)) =
n⋃
i=1

FV(Mi). We

also recover a notion of substitution for terms y ∈ Xτ and N ∈ Termsτ (X) with

x[N/y] =

N x = y

x otherwise.

F (M1, . . . ,Mn)[N/y] = F (M1[N/y], . . . ,Mn[N/y])

Given a signature Σ, a model of Σ is pair ((Aσ)σ∈|Σ|, J−K), where (Aσ)σ∈|Σ| is a family of carrier

sets with a collection of well-typed functions JF K : Aσ1
×· · ·×Aσn → Aσn+1

. Crucially, J−K interprets

function symbols F : σ1, . . . , σn → σn+1 as actual functions. Given a collection X of variable sets

(Xσ)σ∈|Σ|, a valuation is a family (ρσ : Xσ → Aσ)σ∈|Σ| consisting of functions assigning values in

the model to variables, whence an interpretation consists of the family of functions

(J−Kτρ : Termsτ (X)→ Aτ )τ∈|Σ|

8Contrast this with how terms are inductively defined in classical model theory.
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with JxKτρ = ρτ (x) for x ∈ Xτ and

JF (M1, . . . ,Mn)Kτρ = JF K (JM1K
τ
ρ , . . . , JMnK

τ
ρ)

In this manner, we have a bijective correspondence between valuations and interpretations ρσ ⇐⇒

J−Kτρ . We are now equipped to define the category of set theoretic models, S-Model,

Objects triples of the (Σ, (Aσ), J−K);

Morphisms pairs of the form (φ, (Hσ)) : (Σ, (Aσ), J−K)→ (Σ′, (A′σ), J−K′) such that

• a signature morphism φ : Σ→ Σ′

• a |Σ|-indexed collection of set functions Hσ ∈ HomSets(Aσ, A
′
φσ) such that for each func-

tion symbol F in Σ,

Aσ1 × · · · ×Aσn A′φ(σ1) × · · · ×A
′
φ(σn))

Aσn+1
A′φ(σn+1)

Hσ1 × · · · ×Hσn

Hσn+1

JF K Jφ(F )K′

commutes

The key take-away here is that there are two useful fibrations:

S-Model
↓

Sign defined by the functor which

sends a model to it’s underlying signature, and whose fibre over Σ ∈ Ob Sign is the category of

models with signature Σ; and one

S-Model
↓

Sets defined by taking a model to its underlying set of types,

whose fibre over |Σ| is the category of models of signatures with |Σ| as a set of types.

Remark. Rather remarkably, for any Σ and a category B with finite products, a model of Σ in B

is a functor M : Cl(Σ) → B that preserves products, from which we can realize the category of Σ

models in B as the subcategory of the hom-category Cat(Cl(Σ),B), or rather, FPCat(Cl(Σ),B),

where FPCat is the category of categories with finite products.
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1.1.2 The Syntax of Calculi of Types And Terms

Now, stepping back from the point of view that has various collections (Xσ)σ∈|Σ| as variables which

are already typed such that they form a parameter,9 we can instead fix the set of variables in

advance, much in the same way we may consider a fibre in a fibration.

Definition 1.4. Given a signature Σ, we define the term calculus with a denumarably infinite set

of variables {v1, v2, . . .} as follows:

A context Γ is a finite sequence of variable declarations, i.e.

Γ ≡ (v1 : σ1, . . . , vn : σn)

such that two contexts concatenate with commas, i.e.

Γ,∆ ≡ (v1 : σ1, . . . , vn : σn), (vn+1 : τn+1, . . . , vn+m : τn+m) ≡ (v1 : σ1, . . . , vn : σn, vn+1 : τn+1, . . . , vn+m : τn+m)

Identity v1 : σ ` v1 : σ

Function symbol For function symbols F : σ1, . . . , σn → σn+1 in Σ,
Γ `M1 : σ1 · · · Γ `Mn : σn

Γ ` F (M1, . . . ,Mn) : σn+1

Weakening
v1 : σ1, . . . , vn : σn `M : τ

v1 : σ1, . . . , vn : σn, vn+1 : σn+1 `M : τ

Contraction
Γ, vn : σn, vn+1 : σn+1 `M : τ

Γ, vn : σn `M : τ

Exchange
Γ, vn : σn, vn+1 : σn+1,∆ `M : τ

Γ, vn : σn+1, vn+1 : σn,∆ `M [vn/vn+1, vn+1/vn] : τ

These five rules form the term calculus of a signature Σ; notably, the final three rules are the

structural rules.10 From the term calculus for Σ, we define the classifying category (or term

model) as the following category:

objects contexts Γ, which are variable declarations of the form:

9This is the perspective borrowed from universal algebra.
10

Notation. For readers unfamiliar with proof theory and type theory, v1 : σ1 is read as v1 witness σ1 and Γ ` M : τ
expresses that M is a term of type τ in context Γ.
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morphisms With ∆ = (τ1, . . . , τn), n-tuples (M1, . . . ,Mn) : Γ → ∆ for which we can derive

Γ ` Mi : τi. Particularly, the identity morphism on Γ is simply the collection of variables in

Γ, and the composition of context morphisms

(L1, . . . , Lk) = (N1, . . . , Nk) ◦ (M1, . . . ,Mm)

by simultaneous substitution:

Li = Ni[M1/v1, . . . ,Mm/vm]

with associativity of composition preserved by

M [N/vn][L/vm] ≡M [N [L/vm]vn]

for vm not free in M .

We denote the classifying category by Cl(Σ). This is our first syntactically defined category.

Crucially, the classifying category Cl(Σ) has finite products. This can quickly be checked by

noting that ∅ is a terminal object, as there is only one morphism from Γ → ∅, namely the empty

sequence for any context Γ. Similarly, concatenation of contexts by commas gives rise to the obvious

projection morphisms, i.e.

Γ
(v1,...,vn)←− Γ,∆

(vn+1,...,vnm )−→ ∆

1.1.3 A Few Remarks on Formula

Although now we have a calculus for terms, we do not have a means of denoting predicates. For

this, we’ll need formulae. In the interest of being exhaustive, the following definition will be used to

define many different classes of formula.

Definition 1.5. We recursively define a class Fr of formulae over Σ as follows:

Truth > ∈ Fr. Importantly, FV(>) = ∅.
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Falsity ⊥ ∈ Fr. Importantly, FV(⊥) = ∅.

Relations If t1 : A1, . . . , tn : An are terms, and R � A1 · · ·An is a relation symbol, then

R(t1, . . . , tn) ∈ Fr.

Equality If s : A and t : A, then (s =A t) ∈ Fr. Importantly, FV(s =A t) is the set of variables

occurring in both s or t.

Binary Conjunction11 If φ, ψ ∈ Fr, then (φ ∧ ψ) ∈ Fr. Importantly, FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ).

Notably, we will see that binary conjunction corresponds to the notion of products types.

Binary Disjunction12 If φ, ψ ∈ Fr, then (φ ∨ ψ) ∈ Fr. Importantly, FV(φ ∨ ψ) = FV(φ) ∪ FV(ψ).

Notably, we will see that binary disjunction corresponds to the notion of co-product types.

Implication If φ, ψ ∈ Fr, then (φ⇒ ψ) ∈ Fr. Importantly, FV(φ⇒ ψ) = FV(φ) ∪ FV(ψ). Notably,

we will see that implication corresponds to → types.

Negation If φ ∈ Fr, then ¬φ ∈ Fr. Importantly, FV(¬φ) = FV(φ).

Universal Quantification If x : A and φ ∈ Fr, then (∀x : A)φ.13 Importantly, FV((∀x : A)φ) =

FV(φ)\{x}. We will not have time to go into
∏
−types (dependent function types) in detail,

however, we have the following type former rules for the
∏

-type:14

∏
-Formation

Γ ` A : Σ Γ, x : A ` B : Σ

Γ `
∏

(x:A)

B : Σ

∏
-Introduction

Γ, x : A ` b : B

Γ ` λ(x : A).b :
∏

(x:A)

B

∏
-Elimination

Γ ` f :
∏
x:A

B Γ ` a : A

Γ ` f(a) : B[a/x]∏
-Computation

Γ, x : A ` b : B Γ ` a : A

Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B[a/x]

∏
-Uniqueness Principle

Γ ` f :
∏

(x:A)

B

Γ ` f ≡ (λx.f(x)) :
∏

(x:A)

B

13If we happen to be working with a single sort, then ∀x is appropriate.
14Notably, we’ve condensed β, η rules into a computation rule.
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Both the expression λ(x : A).b and
∏

(x:A)

B bind free occurences of x in b and B respectively.

The reader is advised to keep in mind that if x does not occur freely in B so tha tB does not

depend on A, we recover the ordinary function type A→ B.

Existential Quantification If x is a variable, and φ ∈ Fr, then (∃x)φ. Importantly, FV((∃x)φ) =

FV(φ)\{x}. We will not have time to go into
∑
−types (dependent pair types) in detail,

however the type former rules for Σ are:

∑
-Formation

Γ ` A : Σ Γ, x : A ` B : Σ

Γ `
∑

(x:A)

B : Σ

∑
-Introduction

Γ, x : A ` B : Σ Γ ` a : A Γ ` b : B[a/x]

Γ ` (a, b) :
∑

(x:A)

B

∑
-Elimination

Γ, z :
∑

(x:A)

B ` C : Σ Γ, x : A, y : B ` g : C[(x, y)/z] Γ ` p :
∑
x:A

B

Γ ` ind ∑
(x:A)

B(z.c, x.y.g, p) : C[p/z]∑
-Computation 15

Γ, z :
∑

(x:A)

B ` C : Σ Γ, x : A, y : B ` g : C[(x, y)/z] Γ ` a′ : A Γ ` b′ : B[a′/x]

Γ ` ind ∑
(x:A)

B(z.C, x.y.g, (a′, b′) ≡ g[a′, b′/x, y] : C[(a′, b′)/z]

Infinitary Disjunction If I is a set, φi ∈ Fr for each i ∈ I and
⋃
i∈I

FV(φi) is finite, then
∨
i∈I

φi ∈ Fr.

Infinitary Conjunction If I is a set, φi ∈ Fr for each i ∈ I and
⋃
i∈I

FV(φi) is finite, then
∧
i∈I

φi ∈

Fr.

These define the following classes of formulae:

Atomic Formulae The smallest set of formulae closed under relations and equality.

Horn Formulae The smallest set of atomic formulae closed under truth and binary conjunction.

Regular Formulae The smallest set of Horn formulae closed under existential quantification.

15We call ind ∑
(x:A)

B the induction function for dependent pair types. Importantly,
∑

(x:A)

B binds free occurrences

of x in B, although ind ∑
(x:A

B has some arguments with free variables beyond those in Γ. When B does not contain

free occurrences of x, we find a special case of the cartesian product type former A×B.
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Coherent Formulae The smallest set of regular formulae closed under falsity and binary disjunc-

tion.

First Order Formulae The smallest set of coherent formulae closed under implication, negation,

and universal quantification.

Geometric Formulae The smallest class of coherent formulae closed under infinitary disjunction.

Infinitary First Order Formulae The smallest class of first order formulae closed under infini-

tary conjunction and disjunction.
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1.2 Functorial Semantics in Bicartesian Closed Categories

One of the chief goals of this section is to convince readers that putting a reasonably expressive

logic on a type theory amounts to putting a pre-order fibration on a structure. In part, the idea

to keep in mind is that the base category of a fibration consists of contexts and the fibre above

a context is what is derivable from that context. Throughout, it should suffice to consider the

simple fibration mentioned in Section 1.1. Due to (page)-spatio-temporal constraints, the full line

from the Grothendieck topoi invoked in the Weil conjectures to a type theory captured by a big

topos has not been built. Instead, for any signature Σ, we will construct a simply typed lambda

calculus corresponding to bicartesian closed categories that possesses some of the features we want,

namely: conjunction, disjunction and implication. Afterwards, a brief sketch of what we mean by

propositions and theories will be provided.

Definition 1.6. Given a signature Σ, the simply typed λ-calculus λ1(×,+)(Σ) is defined by the

following rules:

σ ∈ |Σ| Formation ` σ : Type

0-Formation ` 0 : Type

1-Formation ` 1 : Type

→-Formation
` σ : Type ` τ : Type

` σ → τ : Type

+-Formation
` σ : Type ` τ : Type

` σ + τ : Type

×-Formation
` σ : Type ` τ : Type

` σ × τ : Type

1-Introduction ` tt : 1

→-Introduction
Γ, v : σ `M : τ

Γ ` (λ(v : σ).M) : σ → τ

+L-Introduction
Γ `M : σ

Γ ` inl(M) : σ + τ

+R-Introduction
Γ ` N : τ

Γ ` inr(N) : σ + τ
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×-Introduction
Γ `M : σ Γ ` N : τ

Γ ` 〈M,N〉 : σ × τ

0-Elimination Γ, z : 0 ` {} : ρ

→-Elimination
Γ `M : σ → τ Γ ` N : σ

Γ `MN : τ

+-Elimination
Γ ` P : σ + τ Γ, x : σ ` Q : ρ Γ, y : τ ` R : ρ

match(P, inl(x).Q, inr(y).R) : ρ

×L-Elimination
Γ ` P : σ × τ

Γ ` fst(P ) : σ

×R-Elimination
Γ ` P : σ × τ
Γ ` snd(P ) : τ

Term Calculus These are simply the rules given in Definition 1.3.

Importantly, this is a λ-calculus with exponent, finite co-product, and finite product types built from

the signature Σ, with 0 referring to the empty co-product type and 1 referring to the empty product

type. Tellingly, we call constructor of the exponent type σ → τ a λ-expression. Significantly, the

introduction rules introduce co-projections inl(−), inr(−) and projections fst(−), snd(−). Addi-

tionally, match(P, inl(x).Q, inr(y).R) can be read as follows: given P witnesses σ+τ , if P witnesses

σ, then do Q with P for variable x; else if P witnesses τ , do R with P for y.16 Before verifying

that the corresponding classifying category for this calculus is bicartesian closed, we will need to

introduce the following conversion rules so that we have an appropriate notion of computation:

β-reduction, → Γ, v : σ `M : τ Γ ` N : σ

Γ ` (λv : σ.M)N =β M [N/v] : τ

η-conversion, → Γ `M : σ → τ
Γ ` λv : σ.Mv =η M : σ → τ

β-reduction, 0
Γ, z : 0 `M : ρ

Γ, z : 0 `M =β {} : ρ

β-reduction, 1
Γ `M : 1

Γ `M =β tt : 1

β-reduction, +L
Γ ` P : σ + τ Γ, x : σ ` Q : ρ Γ, y : τ ` R : ρ

Γ ` match(inl(M), inl(x).Q, inr(y).R) =β Q[M/x] : ρ)

β-reduction, +R
Γ ` P : σ + τ Γ, x : σ ` Q : ρ Γ, y : τ ` R : ρ

Γ ` match(inr(M), inl(x).Q, inr(y).R) =β Q[N/y] : ρ)

16 [9] actually identifies match with unpack− as[ιlinQ, ιrinR]. In any case, perspicacious readers will get that this
is disjunctive.
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η-conversion, +
Γ ` P : σ + τ Γ, z : σ + τ ` R : ρ

match(P, inl(x).R[(inl(x)/z)], inr(y).R[inr(y)/z]) =η R[P/z] : ρ

β-reduction, ×L
Γ `M : τ Γ ` N : τ

Γ ` fst(〈M,N〉) =β M : σ

β-reduction, ×R
Γ `M : τ Γ ` N : τ

Γ ` snd(〈M,N〉) =β N : τ

η-conversion, × Γ ` P : σ × τ
Γ ` 〈fst(P ), snd(P )〉 =η P : σ × τ

It warrants mentioning that the β-conversion consists of rules specifies applying the elimination rule

to the introduction rule,17 generating an equivalence relation called the β-equivalence. In some dual

sense, η-reduction applies an introduction rule to the elimination rule, generating an equivalence

relation called the η-equivalence. Here on out, we use ≡ to denote this equivalence, with the caveat

that this should which should not be confused with the judgmental equivalence ≡ occurring at the

level of syntax.

We now have a syntactically constructed category Cl1(+,×)(Σ) called the λ1(+,×)-classifying

category of Σ defined as follows:

objects Contexts Γ;

morphisms with ∆ = (v1 : τ1, . . . , vm : τm), morphisms are m-tuples ([M1], . . . , [Mm]) : Γ → ∆ of

equivalence classes of terms Mi such that Γ `Mi : τi in λ1+,×(Σ).

Crucially, λ1+,× is a type theory that allows us to describe the application of a function

M : σ → τ . Particularly, this corresponds to the categorical notion of exponentials, which the

reader can recall are right adjoints to the functor A× (−), whose co-unit is the evaluation function.

This is made explicit by the following proposition:

Proposition 1. Cl1+,×(Σ) is bicartesian closed.

Proof. This amounts to verifying the following claims:

Claim 2. The empty type 0 is an initial object.

17In the case of →, this amounts to the evaluation of a function on an argument, and belying the λ-calculus. In a
dual sense, the η-reduction of → corresponds to the extensionality of functions.
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Proof. Given the elimination rule, for any type σ, we have z : 0 ` {} : σ.

To see the uniqueness up to isomorphism, consider the η-reduction applied to z : 0 ` M : σ,

whence we find z : 0 `M =η {} : ρ. Since this rule demonstrates that in a context where the empty

type is inhabited, any term M is necessarily convertible to the empty type. In this way, we find that

[M ] ∼= [{}] : 0→ σ, whence 0 is an initial object.

Claim 3. The unit type 1 is a terminal object.

Proof. This is given by the formation and introduction rules; namely, any context will yield x : σ `

tt : 1. Under the β-conversion, we see that if x : σ ` M : 1, then x : σ ` M =β tt : 1, whence

[M ] ∼= [tt] : σ → 1.

Claim 4. The arrow type (or more properly, exponent type) σ → τ is the exponential object in

Cl1+,×(Σ)

Proof. Given a term z : σ × τ ` M : τ , we have an arrow σ × τ → ρ from which we can form the

λ-abstraction term

x : σ ` λ(y : τ).M [〈x, y〉 /z] : τ → ρ

From this, we have the categorical abstraction

Λ([M ]) ∼= [λ(y : τ).M [〈x, y〉 /z]] : σ → (τ → ρ)

Furthermore, we can define the co-unit (the evaluation morphism) from terms

w : (τ → ρ)× τ ` (fst(w))(snd(w)) : ρ

ev :≡ [(fst(w))(snd(w))] : (τ → ρ)× τ → ρ

A verification that the categorical β and η conversions following from the syntactic conversions can

be found in [9].

Claim 5. The co-product type σ + τ is a co-product object.
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Proof. Given terms x : σ ` inl(x) : σ+τ and y : τ ` inr(y) : σ+τ , we have our obvious coprojection

maps ιl : σ → σ + τ and ιr : τ → σ + τ . Then, for any pair of terms x : σ ` Q : ρ and y : τ ` R : ρ,

we have a pair of morphisms σ → ρ and τ → ρ, such that we have our cotuple morphism σ+ τ → ρ

given by matching, i.e.

z : σ + τ ` match(z, inl(x).Q, inr(y).R) : ρ

with the isomorphisms arising through application of our β and η rules.

Claim 6. The product type σ × τ is a product object.

Proof. Using ×−introduction and elimination, we have for t : ρ ` x : σ and t : ρ ` y : τ ,

t : ρ ` 〈x, y〉 : σ × τ

giving us maps ρ → σ, ρ → τ and ρ → σ × τ . Furthermore, our respective projection morphisms

are given by fst(〈x, y〉) and snd(〈x, y〉), so that we have t : ρ ` x =β fst(〈x, y〉) : σ (and similarly

for our second projection).

Thus, we find that Cl1+,×(Σ) is a bicartesian closed category. Importantly, this means that

λ1(+,×)-calculi can be interpreted in bicartesian closed categories.

At this point, some clarification of terminology is in order:

Definition 1.7. A sequent over a signature Σ is a formal expression of the form

φ `Γ ψ

where φ, ψ are formula over Σ and Γ is a context such that any assignment of individual values to

variables in Γ which make φ true also make ψ true. Notably, a sequent is regular if both formula

are regular, coherent if both formula are coherent, etc. A theory over a signature Σ is a set T of

sequents over Σ whose elements are the axioms of T.

An algebraic theory is a theory whose signature has a single sort and no relation symbols

apart from logical equality, such that the axioms are of the form (> `Γ φ), where φ ≡ (s = t) and
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Γ is the canonical context of φ.

Example 1.2.1. We can describe the theory of local rings with coherent theories as follows:

• ((0 = 1) `[] ⊥);

• ((∃z)(x+ y)z = 1) `x,y ((∃z)(xz = 1) ∨ (∃z)(yz = 1))).

Remark. The first thing to remark upon is that unlike the λ1 classifying category from the previous

section, the classifying category we just described takes equivalence classes of terms instead of the

terms themselves as the constituent of context morphisms. In both cases, we are transforming

contexts, which seems like a basic pre-requisite for any deductive system. Of course, we have just

constructed a syntactic category that allows for conjunction, disjunction and implication, as well as

some notion of truth and falsity, but we do not yet have a clear idea of propositions.

To rectify this, a brief sketch of the propositions-as-types paradigm is in order. We will

need to be explicit about the logic we’re working with. Due to the aforementioned spatio-temporal

constraints, we’ll consider the minimal intuitionistic logic for our purposes, which arises when

working with the term calculus and rules associated with the arrow type → (so for the time being,

no notion of truth, falsity, conjunction or disjunction). Given a signature Σ, consider T the formal

closure of |Σ| under the →.18 For σ1, . . . , σn, τ ∈ T , we write

4σ1, . . . , σn `MIL τ

if τ is derivable from the assumptions σ1, . . . , σn using the → introduction and elimination rules.

Now, we let A be some collection of sequents σ1, . . . , σn ` τ with σi, τ ∈ |Σ|. For each S ∈ A, there

is a formation rule,

S

Not surprisingly, we regard the sequents of A as axioms, expressing that S is derivable in any context

(which is about as good a working definition of axiom as one can hope for). With some work, this

paradigm can be extended to an intuitionistic logic with a λ1(+,×) calculus. For now we see that for

18This simply means what you’d expect: |Σ| ⊆ T and if σ, τ ∈ T ⇒ (σ → τ) ∈ T .
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any Σ, CL1+,×(Σ) is an object in the category of bicartesian closed categories, denoted by BiCCC.

Given an earlier remark, we say that a model for the λ1+,×(Σ) in a bicartesian closed category

A is a functor M : Cl1+,×(Σ) → A. This just generalizes the notion we had earlier (to see how,

note that Sets is bicartesian closed). In the case of λ1+,× coupled with
∏

and
∑

types, we have

the following dictionary:

English Type Theory
True 1
False 0

A and B A×B
A or B A+B

If A, then B A→ B
A if and only if B (A→ B)× (B → A)

Not A A→ 0
For all x : A, P (x) holds

∏
(x:A)

P (x)

There exists x : A such that P (x)
∑

(x:A)

P (x)

Table 1.1: Handy Logical Dictionary

Importantly, this dictionary establishes that the λ1+,× calculi is strong enough to provide us

propositional logic, and when coupled with the
∏

and
∑

type formers, predicate logic. In the case

of predicate logics, a predicate P over a type A is a family P : A→ U , where U is our type universe,

and P assigns all witnesses to A to a type P (a). It is precisely this translation that gives rise to

the propositions-as-types paradigm, as one (not so) simply translates propositions and their proofs

into types and their elements. Crucially though, this is an intuitionistic logic, and as such, it does

not include classical logical principles such as the law of excluded middle or proofs by contradiction,

nor does it rule them out. As a computational logic, type theory provides axiomatic freedom, which

means that we can incorporate axioms into the definition of types using the
∑

type former. For

instance, we define Monoid as a type A equipped with a binary operation m : A → A → A as

follows:19

∑
(A:U)

∑
(m:A→A→A)

(
∏

(x:A)

∏
(y:A)

∏
(z:A)

(m(x,m(y, z)) = m(m(x, y), z))×(
∑
(e:A)

∏
(x:a)

((m(x, e) = m(e, x))×(m(x, e) = x)))

19Given an inhabitant of this type, by applying the appropriate projections, we can extract the carrier A, the
operation m, and a witness of either axiom.
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1.3 Elementary Topoi

We begin our discussion by defining a particular kind of adjoint functor.

Definition 1.8. A geometric morphism f : E→ F is an adjoint pair of functors f∗ a f∗ : E→ F,

such that f∗ is left-exact. We call f∗ the direct image of f and f∗ the inverse image of f .

Geometric morphisms are morphisms over a very special kind of category called a topos.

Definition 1.9. An elementary topos is a category E which

1. is a bicartesian closed category;

2. has an object Ω ∈ Ob E, with a map > : 1 → Ω called the subobject classifier, which is

a pointed object classifying monomorphisms, along with a morphism P(−) which assigns to

each object X ∈ Ob E an object P(X) ∈ Ob E, where P(X) is called the power object of

X, which can be thought of as a generalization of the power set construction in set theory;

3. the functors SubE(−) and HomE(Y ×−,Ω) such that for each object X ∈ Ob E, we have two

natural isomorphisms SubEX ∼= HomE(X,Ω) and HomE(Y ×X,Ω) ∼= HomE(X, P(Y )).

Example 1.3.1. The canonical example of a topos is the category of sets, Sets, where the sub-

object classifier consists of the characteristic functions and Ω = {0, 1} such that

a d

Ω1

f

χf!

>

commutes.

We also recognize that ⊥ : 1 → Ω is defined by ⊥(∗) = 0. Now, since ⊥ : 1 → Ω is a unique

arrow, we can recognize this as the characteristic function defining a subobject classifier for some

monic arrow. In this case, the characteristic function is of the unique map from ∅ → 1, giving us

the following pullback square:

∅ 1

Ω1

!

⊥!

>
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which, in turn, can be used to describe the false maps for any topos. Thus we can say ⊥ = χ1
0,

where 01 indicates the unique map from the initial object to the terminal object.

Furthermore, working within the topos of sets, Sets, we can recognize that f : X � Y are

the inclusion maps X ↪→ Y , as these are simply abstract sets. Moreover, in Sets the power object

P(X) or rather ΩX is just the power-set relation 2X , as we can identify P(X) ∼= 2X when working

with sets.20

In type theory, if a : Set and if for the type family P : a→ U , for each x : a, P(X) is regarded

as a proposition, then we can refer to P(−) as a membership predicate21 and identify subsets of

b ⊆ a, with the following useful dictionary between set predicates and dependent pair types:

Rather curiously22 within the type theoretic construction, where b : Set, every x : b is indistinguish-

able as sets in an intuitionistic type theory. This is because we are not dealing with the sets of

ZFC. Rather, these are the abstract sets. From this example we can see one thing about sets: the

logic of Sets is an account of set membership. This structure is rather brutal, as it ignores certain

subtleties which may be of interest. Luckily, we have other topoi for that!

Remark. Crucially, Ω retains a lattice structure.

In category theory, if a category C has a terminal object 1, we can define the elements of

other objects X ∈ Ob C as the class of arrows 1→ X. In the case of a topos E, the class of arrows

20If a, b : Set, and χa = χb, where χa and χb are the standard characteristic functions of sets a,b that identify
whether a point in a set c is included in a (b, resp), then we have a = b, as they agree on all points, namely
χa(a) = χb(a) = χa(b) = χb(b) = {1}.

21Indeed, it is worth recalling that type families are fibrations, in so much as given some type universe U , if A : U ,
then the type family P : A→ U is a fibration with base space A and each P(X) is a fibre over x, with the dependent
pair

∑
x:A

P(X) characterizing the total space of the fibration. In the case of propositional membership, we have

the familiar predicate logic of first order logic, but within the internal logic of other decidedly less quotidian topoi,
we often have a typed higher order logic with higher order predicates. One could almost say that this motivates the
hunt for a means of modeling type theory in any elementary (∞, 1)-topos (although that would very reductive).

22Although curious, this is not shocking at all, and can be considered an instance of the Mengen/Kardinalen paradox
that motivated Lawvere to study cohesive sets in the first place.

Set Theory ITT
{x ∈ a | P(X)}

∑
x:A

P(X)
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1 → Ω are the truth-values of E. In fact, one ought to think of a topos as being a generalization

of the category of sets, in so much as one can do mathematics within different topoi.

That said, it is still immensely fruitful to work with Sets-valued (pre)- sheaves.

Example 1.3.2. If C is locally small, the functor category PSh(C) has functors F : Cop → Sets for

objects and natural transformations η : F → G for morphisms. For those familiar with the definition

of presheaves, we see that F ∈ Ob PSh(C) restricts x ∈ F(X) along all arrows f ∈ HomC(Y,X), as

expected. In general, for categories C and D, a D valued pre-sheaf is the functor, F : Cop → D.

Thus, a presheaf is a map such that for each object X in C, F (X) is an object in D, and for each

morphism f : X → Y , F(f) : F (Y )→ F (X) is a morphism in D. Moreover, F(g ◦ f) = F(f) ◦F(g)

and F(idX) = idF(X).

Importantly, each X ∈ Ob C is associated to a representable functor HomC(−, X), which is

clearly a presheaf. For f ∈ HomC(Y,X), there is a natural transformation

η : HomC(−, Y )→ HomC(−, X)

which when paired with the mapping X 7→ HomC(−, X), we can use to define a full and faithful

functor Y : C → PSh(C) called the Yoneda embedding. The existence of Y is given by the Yoneda

Lemma, which asserts that for an arbitrary presheaf F(X)

θ : HomPSh(C)(HomSets(−, X),F) ∼= F(X)

defined on η by θ(η) = ηX(idX).

In particular, given the discussion in chapter 2, if there is a subobject classifier Ω for PSh(C)

for small C, then by the Yoneda Lemma,

SubPSh(C)(HomC(−, X)) ∼= HomPSh(C)(HomC(−, X),Ω)

Thus, if Ω ∈ Ob PSh(C) exists, it has the object function Ω(X) ∼= SubPSh(C)(HomC(−, X)), which

is to be expected since the subobject classifier is classifying subobjects! This is little more than an

abstract generalization of the following notion:
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Definition 1.10. If C is a locally small category, and X ∈ Ob C, then a sieve on X is some subset

of S ⊆ Ob C ↓ X such that if f ∈ S and f ◦ h ∈ Ob C ↓ X, then f ◦ h ∈ S, which we can encode as

a definable formula:23

Sieve[X;S] :≡ (S ∈ P(Ob C ↓ X))→ (((f ∈ S) ∧ ((f ◦ h) ∈ Ob C ↓ X))→ ((f ◦ h) ∈ S))

In fact, we recognize that

Ω(X) ∼= SubPSh(C)(HomC(−, X)) ∼= {S | Sieve[X;S]}

i.e., the sieves on X are in bijective correspondence with the subobjects in PSh(C) of the repre-

sentable functor HomC(−, X), such that sieves S are identified with the functor

Y 7→ {f ∈ S | dom[Y ; f ]}

Moreover, if f ∈ HomC(Y,X), then Ω(f) ∈ HomSets(Ω(Y ),Ω(X)) is defined by

S 7→ {g ∈ HomC(X,C) | f ◦ g ∈ S}

where S is a sieve on X. So not only do we have a bijective correspondence of sieves on X with

subobjects in PSh(C), but we may also regard the truth subobject classifier > : 1 → Ω as being

given by the maximal sieve >X(∗) = Ob C ↓ X.

Finally,

Definition 1.11. Given F , we can define an index category called the category of elements of

F ,24 suggestively denoted by
∫
C
F . The objects of this category are pairs (X, p) such that X ∈ Ob C

and p ∈ F(X), and the morphisms u ∈ Hom∫
C
F ((Y, q), (X, p)) are simply u ∈ HomC(Y,X) such

that (F(u))(q) = p. Moreover,
∫
C
F has an obvious canonical projection functor πF :

∫
C
F → C

23Clever readers may also recognize sieves as resembling right ideals of a monoid closed under precomposition.
Indeed, this is precisely the case if C ≡Mon.

24Often known as the Grothendieck completion.
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defined by (X, p) 7→ X.

In particular, u is chosen so that a fixed p ∈ X is taken back into q ∈ Y. So now, we can define

diagrams D :
∫
C
F → C of type

∫
C
F such that

lim
−→∫

C F
Y ◦D ∼= F

by the Yoneda embedding.

Thus we have proven the following:

Proposition 7. In PSh(C), any F is the canonical colimit of a diagram of representable objects.

It bears mentioning that colimits
∫
C
F can be used to construct pairs of adjoint functors.

Example 1.3.3. Let X be a topological space with a given topology τX . We denote by Θ(X) the

partially ordered set of open sets of τX , which are obviously ordered by inclusion. The category

PSh(Θ(X)) is also a topos. For a pre-sheaf F , and U ∈ Ob Θ(X), it is customary to call the elements

of U the sections of F over U, and the maps F(U) → F(V ) the restriction of sections from

U to V .25

Some Other Interesting Topoi

Before we can define other, far more interesting topoi for the purposes of this paper, we will need

the following definitions.

Definition 1.12. Given a locally small category C, a covering family of X ∈ Ob C is a collection

χX of families of functions (fi ∈ HomC(Xi, X))i∈I for some index I. A coverage is a mapping that

assigns each X ∈ Ob C to a covering family χX such that

(((fi)i∈I ∈ χX) ∧ (g ∈ HomC(Y,X)))→

∃χY (∃((hj)j∈J ∈ χY )(∀(g ◦ hj)(∃i ∈ I(∃(kj,i ∈ HomC(Yj , Xi))(g ◦ hj = fi ◦ kj,i)))))

25It bears mentioning that by the contravariance of presheaves, V ⊆ U must be the case for this to be defined.
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i.e., g ◦hj factors through some fi for each hj , or more evocatively, for each hj , there is some fi and

kj,i so that

Yj

Y X

Xi

kj,i

hj fi

g

commutes.

If F is a pre-sheaf such that given a family of elements (si ∈ X )i∈I ,

((((g ∈ HomC(Y,Xi)) ∧ (h ∈ HomC(Y,Xj)))→ (fi ◦ g = fj ◦ h))→ (F(g)(si) = F(h)(sj)))→

(∃!s ∈ F(X)(F(fi)(s) = si))

for each i ∈ I, then F satisfies the sheaf axiom for (fi) ∈ χX .26 We say F is a sheaf if the sheaf

axiom is satisfied for all covering families of χX .

Remark. This situation is immensely simplified when C has pullbacks, because then it suffices to

check compatibility of si and sj on the pullback of fi and fj . Diagrammatically, this mean that F

satisfies the sheaf axiom for (Xi → X)i∈I if and only if

F (X)→
∏
i∈I

F (Xi) ⇒
∏

(i,j)∈I×I

F (Xi ×X Xj)

is an equalizer diagram.

In particular, when looking at Θ(X), one way to identify sheaves is to define them by presheaves

and sieves, as in the following proposition:

Proposition 8. Let X be a topological space. A presheaf F on X is a sheaf if and only if for every

open set U of X, and every covering sieve S on U , ιS : S → Y(U) induces the following isomorphism:

Hom(Y(U),F) ∼= Hom(S,F)

26 The hypothesis of this axiom is called the compatibility condition.
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Proof. A proof of this proposition can be found in [12] (pp. 70).

Theorem 9. If X is a topological space, then Sh(X) is a topos.

Proof. A full proof of this can be found scattered through [12] and [10]. Broadly speaking, it amounts

to verifying the following:

• Verifying that Sh(X) is a cartesian category by verifying that Sh(X) is reflective in PSh(Θ(X));

• Verifying that Sh(X) is an exponential ideal in PSh(Θ(X)), so that for any sheaf G and any F ,

the exponential GF , which is defined on U to be the set of morphisms HomΘ(X)(−, U)×F →

G and on f : U → V to be the operation HomΘ(X)(−, f) × 1 : HomΘ(X)(−, V ) × F →

HomΘ(X)(−, U)×F , is a sheaf, so that Sh(X) is cartesian closed;

• Verifying that the presheaf Ω on X that takes Ω(U) to Θ(U) is a sheaf, so that > : 1→ Ω can

be defined by >U = U ∈ Ω(U), and induces a classifying map for all F � G.

Example 1.3.4. The slice category Sets ↓ X is a topos. This fact is fairly important, since

specifying a geometric morphism from Sets ↓ X → E amounts to specifying an X−indexed family

of points in E. In fact,27 any Grothendieck topos E will have enough points if and only if there is

some set X such that Sets ↓ X → E is a surjection.

Example 1.3.5. The category of representations of a fixed group G, denoted BG is an

important topos. The notion of representation of G is a tuple (X,µ), where X is a set and µ :

X ×G→ X is a right-action such that for all x ∈ X, and g, h ∈ G

1. µ(x, 1) = x;

2. µ(µ(x, g), h) = µ(x, gh).

Morphisms f : (X,µ) → (Y, ν) are simply f : X → Y such that f(µ(X, g)) = ν(f(X), g). In this

category, a subobject is just a subset Y ⊆ X that is closed under the action of G. Since Y \X

will also be closed under the action of G, the subobject classifier and characteristic function χY are

inherited Sets. Similarly, this holds for topological groups G.

27See (C.2.2) [11] for more details.
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Some Interesting Topoi For Studying Smooth Spaces

Example 1.3.6. Ringed topoi emerge rather naturally from the fact that a topos is a cartesian

monoidal category.28 In this case, given a topos E, one can define internally29 the notion of a

(commutative) unital ring. Specifically, these are pairs30 (E,O) where O is a distinguished unital

ring object internal to the topos E.

Example 1.3.7. Lined topoi (E, R) are ringed topoi equipped with both the usual internal ring

object O and a choice of an internal commutative algebra object R over O, called the line object.

One interesting example of a lined topos are the sheaves31 of cartesian spaces, denoted Sh(CartSpsmooth)

whose lined object is the interval32 object 1
∐

1 → R.33 Suffice to say it is an instance of a

Grothendieck topos,34 as CartSpSmooth can be made into a small site with a little leg work.35

Example 1.3.8. A smooth topos is a lined topos where each functor (−)SpecW : E→ E defined

by an R-Weil algebra36 W has a right adjoint, known as the amazing right adjoint, and the

canonical W → RSpec(W ) is an isomorphism. Effectively this means that each R−Weil algebra is

infinitesimal and satisfies the Kock-Lawvere axiom.37

Topoi as τ-theories

Now we can extend the sketch of λ−theories with cartesian closed categories to τ−theories.

28In this case, the categorical product gives the monoidal structure, and the terminal object acts as the unit.
29There are two important ways to generalize a category: internalization and enrichment. The gist of an internal

category is that within a category A with enough pullbacks, one can construct another category if there is an object
V : A and an object E : A, together with source and target morphisms s, t : E → V , an identity assigning morphism
e : V → E and a composition morphism c : E ×V E → E satisfying the usual coherence laws.

30Looks an awful like a ringed space, no?
31Sheaves are merely pre-sheafs with additional topological structure which tracks the local data of an open set.

The two additional requirements are the locality and gluing requirements: (locality) given an open covering (Ui) of
an open set U , and s, t : F (U) such that s|Ui = t|Ui for each i, then s = t; (gluing) If for each pair Ui, Uj in the open
cover, there two respective sections si, sj which agree on overlaps (i.e si|Ui∩Uj ∩ sj |Ui∩Uj , there is a third section

s ∈ F (U) such that s|Ui = si for each i).
32In categories with finite limits, such as topoi, a lined object is the copairing of maps f, g : 1 → I, where 1 is a

terminal object. This is to say, [f, g] : 1
∐

1→ I is an interval object. In general, it is good practice to associate the
interval object to the unit interval.

33It is a worthwhile exercise to verify that Sh(CartSpSmooth) is a topos, as it is not immediately relevant for this
paper.

34which, as we will see momentarily, are topoi that are equivalent to the categories of sheaves on a small site.
35This is tantamount to proving that every paracompact smooth manifold admits a good open cover.
36An R-Weil algebra is an R-algebra of the form W = R⊕ J , where J is an R-finite dimensional nilpotent ideal.
37Very briefly, this is the requirement that this topos requires every morphism from an infinitesimal interval D ⊂ R

into R is linear and can be extended uniquely to a linear map R→ R.
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Definition 1.13. A τ-signature is one with type constructors for finite products and power types,

along with term constructors:

∗ : 1; FV(∗) = ∅

s : A ∧ t : B ⇒ 〈s, t〉 : A×B; FV(〈s, t〉) = FV(s) ∪ FV(t)

t : A×B ⇒ fst(t) : A ∧ snd(t) : B

and if ϕ is a formula, and x : A , then

{x : A | ϕ} : P(A); FV({x : A | ϕ}) = FV(ϕ)\{x}

The τ -calculus whose rules of inference are the standard first order rules, with the following product

type axiom:

for x : A, y : B, z : A×B

• x.(x =1 ∗) x has type 1;

• x, y.(fst(〈x, y〉) =A x);

• x, y.(snd(〈x, y〉) =B y);

• z.(〈fst(z), snd(z),=〉A×B z).

and the following two axioms for power types:

for w : P(A),

> `w (w = {x : A | x ∈A w})

and for any formula φ, with free variables in the string ~x, y,

(z ∈A {y : A | φ}) a`~x,y φ[z/y]

The takeaway from this is that a τ-theory T is simply a set of sequents over Σ, which are

regarded as the non-logical axioms of the theory. In this regard, the usual usual notion of a model

for a theory in a topos is simply a structure for its signature satisfying the axioms of T. So, just as
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Heyting categories correspondeded to first-order theories, we see that elementary topoi correspond

to higher order theories (in general).

Example 1.3.9. One such example of the internal language of a topos corresponding to higher

order theories is the Mitchell-Bénabou language, LE,which is one way of describing the objects

of E as if they were sets.

In particular, one regards the objects of E as types for this language, so that for each type

X, there are logical variables x1, x2, . . . of type X, which are interpreted as the identity arrow idX .

Each term σ of type X involves the construction of variables, some of which may be free over X, say

w, y and z, with respective types W,Y and Z. Then the domain of definition of σ is the product

space W × Y × Z, and whose interpretation is an arrow

σ : W × Y × Z → X

in E. Summarizing [12], we can inductively define the terms of this language as follows:

1. For each x : X, the interpretation of x is the identity map idX ;

2. Terms σ, τ of types X and Y and interpretations σ : U → X and τ : V → X yield a term

〈σ, τ〉 of type X × Y with interpretation 〈σπU , τπV 〉 : W → X × Y where W has projection

maps πU , πV ;

3. Terms σ : U → X and τ : V → X yield term σ = τ of type Ω with the interpretation

(σ = τ) : W
〈σπU ,τπV 〉−→ X ×X δ−→ Ω

where δ is the characteristic map of the diagonal ∆ : X � X ×X;38

4. An arrow f : X → Y of E and a term σ : U → X of type X yield a term f ◦ σ of type Y , with

the interpretation

f ◦ σ : U
σ→ X

f→ Y

38Terms of type Ω are formula of the language LE.
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5. Terms of θ : V → Y X and σ : U → X, yield a term θ(σ) of type Y with the interpretation

θ(σ) : W
〈σπU ,τπV 〉−→ Y X ×X eval→ Y

where eval is the evaluation function;

6. Terms σ : U → X and τ : V → ΩX yield a term σ ∈ τ of type Ω, with the interpretation

σ ∈ τ : W
〈σπU ,τπV 〉−→ X × ΩX

eval−→ Ω

7. A variable x : X and term σ : X×U → Z yields λxσ, a term of type ZX , with the interpretation

given by the exponential transpose of σ from the λ-calculus,

λxσ : U → ZX

Astute readers can recognize familiar logical operations such as substitution, AND, OR, etc. More

importantly, for the terms Ω, we can apply the usual logical connectives and quantifies to get

composite terms of type Ω

φ ∧ ψ : W
〈φπU ,ψπV 〉−→ Ω× Ω

∧→ Ω

φ ∨ ψ : W
〈φπU ,ψπV 〉−→ Ω× Ω

∨→ Ω

φ⇒ ψ : W
〈φπU ,ψπV 〉−→ Ω× Ω

⇒→ Ω

¬φ : W
φ−→ Ω

¬→ Ω

As before, quantifiers are adjoints, and validity in this language is simply a matter of a formula

φ(x, y) factoring through > : 1→ Ω.

Remark. One particularly interesting application of this language is that we can define the notion

of a local ring object in a topos E as follows:
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Example 1.3.10. The ring object R in E is such that

∀a ∈ R(∃b ∈ R(a · b = 1) ∨ ∃b ∈ R(1− a) · b = 1)

is valid in E, i.e. the union of the following subobjects

{a ∈ R | ∃b(a · b = 1)}� R

and

{a ∈ R | ∃b((1− a) · b = 1)}� R

of R is R itself. This notion of a ring object generalizes the notion that a local ring in Sets is an R

with a unique maximal ideal.
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Chapter 2

Some Remarks On Grothendieck

Topos Theory

This entire section assumes familiarity with category theory, but not necessarily a familiarity with

algebraic geometry. In particular, this chapter will assume that the reader has some comfort with

equalizers and understands that (co-)homology can be understood functorially. The former are

particularly important in forming the notion of a sheaf. Sections 2.2 and 2.3 explore the notion of

classification and present a few sketches towards the long-term goal of verifying the Weil conjectures

with the tools of intuitionistic type theory.

37
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2.1 Grothendieck Topoi: Sites, Sheaves, and Schemes

Although historically prior to the notion of an elementary topos and the description of coverage

above, the Grothendieck topos and Grothendieck pre-topology drawn from the notion of sieves

themselves were meant to abstract the notion of topological spaces so that one could have a rigorous

account of sheaves, [4]. In particular, the original abstractions were intended to provide the following

definition:

Definition 2.1. A site (C,J ) is a locally small category C stable under pullbacks equipped with

a coverage J . The system of coverings from J are called a (Grothendieck) topology.

Definition 2.2. If C can be identified with a site (C,J ), then a sheaf on site (C,J ) is a presheaf

F satisfying the sheaf condition:

F(U)→
∏
i∈I
F(Ui) ⇒

∏
(i,j)∈I×I

F(Ui ×U Uj)

is exact for every covering (Ui → U).

In other words, F is a sheaf if

f 7→ (f |Ui) : F(U)→
∏
F(Ui)

identifies F (U) with the subset of the product consisting of families (fi) such that fi|Ui×UUj =

fj |Ui×UUj for all i, j ∈ I.

Notation. If F is a presheaf on C, then we refer to F(X) as the sections of the presheaf over object

X. The literature freely alternates between this functor notation, and Γ(U,F) to denote the object

F(U), and beginning in chapter 4, we will stick with this convention.

Remark. A Grothendieck topos is any category that is equivalent to the category of sheaves on a

site. In this sense, a site can be thought of as some category C and some full subcategory of PSh(C)

(i.e. Sh(C)) such that α a ι : Sh(C) ↪→ PSh(C), with α commuting for all finite limits. When

working with Sh(C), this left adjoint α is simply the sheafification functor. For instance, if we’re

looking at Sh(Θ(X)), this would just be the full subcategory of PSh(Θ(X)) such that for any open
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covering {Xi}i∈ I of X.

F(U)→
∏
i∈I
F(Ui) ⇒

∏
(i,j)∈I×I

F(Ui ×U Uj)

is an equalizer, as we mentioned earlier. In this case, it’s clear that Xi ×X Xj is actually Xi ∩Xj ,

and so this is easy to verify. Also, it’s customary to write Sh(Θ(X)) as Sh(X). Notably, Sets is

also a Grothendieck topos as the category of sheaves on {∗}.1 That Sh(Xét) is a Grothendieck topos

is of particular interest, and will motivate our excursion into locally ringed spaces.

In addition to being cartesian closed, locally small and well-powered, Grothendieck topoi are

also well-copowered and possess both separating and coseparating sets. Throughout the proof of

the Weil conjecture, we can make use of the fact that any left adjoint preserves limits (respectively,

right adjoints preserve colimits).2

Definition 2.3. Let E be a Grothendieck topos. We define a point of a Grothendieck topos is

a geometric morphism p : Sets→ E. We say E has a enough points if for any two α, β : X ⇒ Y

for X,Y ∈ Ob E, there is some p : Sets→ E such that

p∗(α) 6= p∗(β)

Remark. For any topological space X, if α, β : F ⇒ G are distinct morphisms in Sh(X), then for

some point x ∈ X, the stalks of αx and βx must be distinct. However, since the stalk maps are the

inverse images of α, β under the geometric morphism of Sets → Sh(X) given by the point x, we

find that Sh(X) has enough points.

Example 2.1.1. Let X be a topological space. Recall that the topology of X can be given as a

category whose objects are the open sets of X, and whose morphisms are the inclusion relations. A

presheaf F of abelian groups on X sends every open subset U of X to an abelian group F (U) and

every inclusion V ⊂ U is sent to an abelian group homomorphism ρUV : F (U) → F (V ) satisfying

the following conditions:

1. F (∅) = 0 where ∅ is the empty set.

1This is almost exactly what one ought to expect.
2This is a consequence of the Special Adjoint Functor theorem.
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2. ρUU = idF (U).

3. For open inclusions W ⊂ V ⊂ U , ρUW = ρVW ◦ ρUV .

Furthermore, F is a sheaf if the following additional conditions hold:

4. If U is an open set and {Vi} is an open covering of U , and if s ∈ F (U) is an element such that

s|Vi = 0 for all i, then s = 0;

5. if U is an open set, {Vi} form an open covering of U , and if there are elements si ∈ F (Vi) for

each i such that for each pair i,j, si|Vi∩Vj = sj |Vi∩Vj , then there is an element s ∈ F (U) such

that s|Vi = si for each i.

We can actually easily accommodate other abelian target categories with this definition, which yields

an abelian sheaf.

Example 2.1.2. Let X be a topological space and k a field. The sheaf of k−algebras is a sheaf

OX : Θ(X)op → CRing ↑ k such that for every open subset U of X, OX(U) is a set of functions

U → k satisfying the following conditions:

1. OX(U) is a k-subalgebra of all the k−valued functions on U ;

2. If U ′ ⊂ U is an open subset and f ∈ OX(U), then f |U ′ ∈ OX(U ′);

3. A function f : U → k on an open subset U of V is in OX(U) if f |Ui ∈ OX(Ui) for all Ui in

some open covering of U .

Remark. This is to say that one way to study k-algebras is to consider the co-slice category of

commutative rings under k (as k is clearly a commutative ring).

We Loved This Site So Much, We Put A Ring On It!

Definition 2.4. If X is a topological space, and OX is a sheaf of k-algebras, then the pair (X,OX)

is a ringed space. For p ∈ X, consider the pair (f, U), where U is a neighbourhood of p and

f ∈ OX(U). A germ of a function at p is an equivalence relation on two pairs (f, U), (f ′, U ′)

such that

(f, U) ∼ (f ′, U ′) ⇐⇒ ∃U ′′ ∈ ob(Θ(X)), p ∈ U ′′ and f |U ′′ = f ′U ′′
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The equivalence classes of these pairs form a k−algebra denoted in the literature by Op or OX,p. It

is important to recognize that for neighbourhoods U of p

Op = lim
−→UXp

OX(U)

(that is, as a direct limit of k-algebras). Finally, it should be clear that morphisms between ringed

spaces are continuous maps ϕ : X → Y such that

f ∈ ob OY (U)⇒ f ◦ ϕ ∈ ob OX(ϕ−1U)

for all open sets U ∈ ob(Θ(Y )). A morphism between ringed spaces is an isomorphism if it is a

homeomorphism, i.e. it is a bijective mapping and its inverse is a morphism between ringed spaces.

(X,OX) is a locally ringed space if for each point p ∈ X, for all non-units a, b ∈ ob OX,p,

a+ b is not a unit, i.e. the stalk OX,p is a local ring. A morphism from (X,OX) to (Y,OY ) is a pair

of maps (f, f ]) where f : X → Y is a continuous map and f ] : OY → f∗OX is a map of shaves of

rings on Y such that f ]P is a local homomorphism of local rigns at each point P ∈ X.

Definition 2.5. Let R be a ring. First, define the formula Prime[R; p] as follows:

Prime[R; p] := (p ⊂ R) ∧ ∀x∀y((x · y ∈ p)→ ((x ∈ p) ∨ (y ∈ p)))

Next, define SpecR := {p | Prime[R; p]}. We can give this set the Zariski topology3, and proceed to

turn it into a locally ringed space, with a sheaf of rings O on SpecR as follows:

For each prime ideal p, let Rp be the localisation of R at p. For an open set in U ⊆ SpecR, we

first define SpSh[U,R; s, p] as follows:

SpSh[U,R; s, p] := ∀p((p ∈ U)→ (s(p ∈ Rp)∧

∃V ∃a∃f((p ∈ V ) ∧ (V ⊂ U) ∧ (a ∈ R) ∧ (f ∈ R)∧

3If a is an ideal in R, define V (a) ⊆ SpecR to be the set of all prime ideals containing a. A topology on SpecR
treats V (a) as the closed sets.
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∀q((q ∈ V )→ (¬(f ∈ q) ∧ (s(q = a/f)))))

In particular, notice that this construction means that s satisfying SpSh are locally quotients of

elements of R, extending the idea of regular functions from fields to arbitrary local rings. Next, then

define

O(U) := {s : U →
∐
p∈U

Rp | SpSh[U,R; s, p]}

It can be verified that each O(U) is a commutative ring with identity. The spectrum of R is the

pair (SpecR,O).

Example 2.1.3. Recall that a graded ring is a ring R =
⊕
k≥0

Rk, where Rk are abelian groups

such that for any a, b ≥ 0, RaRb ⊆ Ra+b, and let R+ =
⊕

k>0Rk. Further recall that homogeneous

ideals a in a graded ring R satisfy a =
⊕
k≥0

(a∩Rk). Elements of each factor Rk of the decomposition

are called homogeneous elements of degree d. If a is a homogeneous ideal of R, then Homg[R; a]

is satisfied.4 Next, we set

ProjR := {p | Prime[R; p] ∧ Homg[R; p] ∧ (R+ 6⊆ p)}

Furthermore, if a is a homogeneous ideal of R, define V (a) = {p ∈ ProjR | p ⊇ a}. Since our

aim is to study ProjR as a locally ringed space, we define a topology by taking the closed sets of

ProjR to be the subsets of the form V (a). With this topology, we form a ringed space (ProjR,O),

where O is a sheaf of rings defined as follows:

For each p ∈ ProjR, denote by R(p) the ring of elements of degree zero in the localized ring M−1R,

where M is the monoid of all the homogeneous elements of R which are not in p. Then, for any

U ⊂ ProjR, we first set

PrSh[U,R; s] := ∀p((p ∈ U)→ ((s(p) ∈ R(p))∧

∃V ∃a∃f((V ⊂ U) ∧ (p ∈ V ) ∧ (Homg[R; a]) ∧ (Homg[R; f ]) ∧ (deg a = deg f)∧

∀q((q ∈ V )→ (¬(f ∈ q) ∧ (s(q) = a/f) ∧ (s(q) ∈ R(q))))))

4We also note that if Homg[R; f ] is satisfied, then f is a homogeneous element of R.
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from which we define the sheaf O on U ⊂ ProjR as follows:

O(U) := {s : U →
∐

R(p) | PrSh[U,R; s]}

Then we find that such an O is a sheaf with the natural restrictions. Hence, for any graded

ring R, (ProjR,O) with O defined above, we have yet another ringed space.

Example 2.1.4. Let R be a graded ring and let M be a graded R−module. The sheaf associated

to M on ProjR is denoted by M̃ . This sheaf is defined5 as follows:

For each p ∈ ProjR, let M(p) be the group of elements of degree 0 in the localization of T−1M ,

where T is the monoid of homogeneous elements in R not in p. We define PrSh1[U,R,M ; s] similarly

to PrSh[U,R; s], only now we expect a ∈ M to be homogeneous and the same degree as f . Then,

for all open sets U ⊆ ProjR, we define

M̃(U) := {s : U →
∐
p∈U

Mp | PrSh1[U,R,M ; s]}

This becomes a sheaf with the obvious restriction maps.

Now, let X = ProjR, and for any n ∈ Z consider R(n) as a module of R, where R(n) =
⊕
k≥n

Rk.

we define the sheaf OX(n) ≡ ˜R(n). In particular, OX(1) is called the twisted sheaf of Serre. In

general, for any sheaf F of OX−modules, the twisted sheaf is defined as F (n) :≡ F ⊗OX OX(n)

But these notions should be familiar to us; they are indeed, nothing but generalizations of

varieties.

A Detour Into The Veritably Varied World of Varieties

Example 2.1.5. An algebraic set has a ringed space structure.

Recall that an algebraic set of an affine n-space An(k) over a field k, denoted V (S), is a

subset of kn is the set of common zeros of some set S ⊂ k[X1, . . . , Xn], the Zariski topology on

An(k) is defined by taking the open sets to be complements of algebraic sets, and a non-empty

subset Y of a topological space X is irreducible if it cannot be expressed as the union of two

5Courtesy of Hartshorne.
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proper, closed subsets Y1, Y2. Additionally, recall that the coordinate ring of V is defined as the

quotient k[X1, . . . , Xn]/a, where V is an algebraic subset of kn and a = I(V ) is the ideal generated

by V . Further recall that a is radical, and so the coordinate ring is a finitely generated, reduced

k-algebra. Finally, for h ∈ k[V ], set D(h) = {a ∈ V : h(a) 6= 0}.

Now suppose that k is an algebraically closed field. We define the following functions:

p 7→ h(p) : V → k

p 7→ 1/h(p) : D(h)→ k

A pair of elements g, h ∈ k[V ] with h 6= 0 defines a function

p 7→
g(p)

h(p)
: D(h)→ k

If f : U → k on open set U of V is regular if for all p ∈ U , there exist g, h ∈ k[V ] such that f = g/h

on the a neighbourhood of p. Finally, denote the set of regular functions on U by OV (U).

It remains to check that the map U 7→ OV (U) defines a sheaf of k-algebras on V.

The definition of regularity is a local definition, and so it suffices to verify this map yields

a k-subalgera. Clearly, constant functions are regular. Now suppose that f, f ′ are regular on a

neighbourhood U of p. Then by the definition of regularity, there are g, g′, h,H ′ ∈ k[V ] with

h(p) 6= 0 and H ′ 6= 0 such that f, f ′ agree with g
h ,

g′

H′ respectively near p. Thus f + f ′ =
gH ′ + g′h

hH ′

near p, and so f + f ′ is also regular near p. It also immediately follows that
gg′

hH ′
is regular, and so

ff ′ is regular. Thus OV (U) is a k-algebra.

Definition 2.6. If a ringed space (X,OX) is isomorphic to a ringed space (V,OV ), where V is

algebraic set in kn, for some field k, then (X,OX) is an affine algebraic variety. For affine

varieties V and W, a map f : V → W is regular if it is a morphism of ringed spaces. These allow

us to consider the category of affine algebraic varieties AffVar.

Definition 2.7. Recall that for fixed algebraically closed fields k, the projective n-space, de-
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noted Pn(k) is the set of equivalence classes of (n + 1)−tuples of elements in k, not all 0, given by

(a0, . . . , an) ∼ (λa0, . . . , λan), for λ ∈ k×. Furthermore, recall that V ⊂ Pn(k) is an algebraic set if

there is a set T of homogeneous polynomials such that V = Z(T ) = {p ∈ Pn(k) : f(p) = 0,∀f ∈ T}.

Then a projective algebraic variety is an irreducible algebraic set in Pn(k) with the induced

topology.

Definition 2.8. In general, we define an algebraic prevariety over k to be a ringed space (X,OX)

where X is quasicompact6 and every point in X has an open neighbourhood U for which (U,OX(U))

is an affine algebraic variety over.

An algebraic pre-variety is said to be algebraic variety if it follows the following separation

condition: for every pair of regular maps ϕ1, ϕ2 : Z → X with Z an affine algebraic variety, the set

{z ∈ Z : ϕ1(z) = ϕ2(z)}.

Example 2.1.6. A particularly important sheaf is the sheaf of regular functions on a variety

X, which is a sheaf of rings on X, denoted by O. If X is a variety over a field k, then for each U ⊆ X,

O(U) is the ring of regular functions from U → k, and for each V ⊆ U , ρUV : O(U)→ O(V ) is the

restriction map. Clearly this definition satisfies a presheaf. To quickly see that this is a sheaf, recall

that a function which is locally 0 is 0, and a function which is locally regular is regular everywhere

by the locality of regular functions.

It bears mentioning that this sheaf is a functor to the slice category of commutative rings over

some field k, i.e., O : Θ(X)op → CRing ↓ k.

Example 2.1.7. Consider the section Γ(P1,O(1)). We claim that this is equal to the set of homo-

geneous polynomials of degree 1.

Proof. Recall that for a graded ring R and a graded R-module M, there is a natural functor given

by M0 7→ Γ(ProjR, M̃) since M0 ↪→M(f) for all f ∈ R.

With P1 the projective line of some ring A, and with R = A[x0, x1] and M = R(1), the degree

0 elements of M are the degree 1 elements of R. These are the homogeneous polynomials of degree

1.

6i.e. every open covering of X has a finite subcovering
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To see that this is an isomorphism, notice that P1 is covered by D(x0) ∪D(x1), and that over

the D(xi), we have global sections which are rational functions with the xi in the denominator and

of homogeneous degree k. Then the intersection A[x0, x1]x0 ∩ A[x0, x1]x1 = A[x0, x1] = R. Hence

there is an isomorphism.

And Back Into The Seriously Structured World of Schemes

Definition 2.9. An affine scheme is a locally ringed space (X,OX) which is isomorphic to the

spectrum of some ring. A scheme is a locally ringed space (X,OX) in which every point has an

open neighbourhood U such that as a topological space (U,OX |U ) is an affine scheme. In this case,

X is the underlying topological space of the scheme (X,OX) and OX is the structure sheaf.

Example 2.1.8. If R is a graded ring, then SpecR is a scheme.7

Definition 2.10. For any ringed space (X,OX), and x ∈ X, we define the stalk as the co-limit of

neighbourhoods of points x, i.e.

OX,x = lim
−→U

Γ(U,OX)

where U ∈ UXx .

Example 2.1.9. If X is a scheme, then OX,x = Γ(U,OX)p, where p is a prime ideal of Γ(U,OX)

corresponding to x. In this way, we can say (X,OX,x) is a locally ringed space if the stalks

OX,x are local rings for all x ∈ X. Our next immediate goal is to describe local rings for the étale

topology.

Remark. The reader is reminded that f ∈ HomRing(X,Y ) is flat if Y ⊗X − : X−Mod→ Y −Mod

is exact, and if X and Y are local rings such that

1. f(mX)Y = mY ;

2. Y/mY is finite and separable over mX ,

7This follows from the fact that:

1. For any p ∈ ProjR, the stalk Op is isomorphic to the local ring Rp;

2. For any homogeneous f ∈ R+, let D+(f) = {p ∈ ProjR | f /∈ p}. Then D+(f) is open in ProjR. Furthermore
these open sets cover ProjR and for each such open set we have an isomorphism of locally ringed spaces
(D+(f),O|D+(f)) ∼= SpecR(f) where R(f)is the subring of elements of degree 0 in the localized ring Rf .
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then f is unramified.

Definition 2.11. Let ϕ ∈ HomSch(Y,X). If for all y ∈ Y , the local homomorphismsOX,ϕ(y) → OY,y

are flat, then ϕ is flat.

Remark. To aid topologists, if Z is a closed subscheme of X, then ι : Z ↪→ X is flat if and only if Z

is open, and thus a connected component of X.

Definition 2.12. Let ϕ ∈ HomSch(Y,X). If Y has an open cover of affine schemes (SpecVi)i∈I such

that

SpecUi = ϕ−1(SpecVi)

is an open affine subscheme of X and ϕ|SpecUi induces

ϕ′ ∈ HomRing(Vi, Ui)

such that Ui is a finitely generated Vi-algebra, then ϕ is of finite type.

Furthermore, ϕ is unramified if, in addition to being of finite type, for all y ∈ Y ,

OX,ϕ(y) → OY,y

are unramified.

Example 2.1.10. An étale morphism is a morphism that is both flat and unramified. It will be

useful to think of étale morphisms as the generalization of a local homeomorphism. Specifically, for a

point p of a topological space X, a map ϕ : X → Y is étale at point p if the map of tangent spaces

is an isomorphism, i.e. dϕ : TMx(X)→ TMϕ(x)(Y ) is an isomorphism, and so ϕ is étale if it is étale

at all points of X. Abstracting further into varieties and schemes, with V = Specm k[X1, . . . , Xn]/I

over some algebraically closed field, such that the geometric tangent cone at the origin is the zero

set of

I∗ := {f∗ | f ∈ I}

If k[X1, . . . , Xn]/I∗ has nilpotents, we use the tangent cone Speck[X1, . . . , Xn]/I∗.
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Thus, an étale site on X is the pair consisting of slice category of Et ↓ X, whose morphisms

are the étale morphisms U → X and whose morphisms are the standard slice category morphisms;

a collection of surjective families of étale morphisms (Ui → U) drawn from the slice category. Given

our earlier treatment of categorial semantics and dependent type theory, we are equipped to regard

these étale maps as terms of type X, where X is a projective variety, with free variables of type U ,

or rather, free variables in the respective étale families. As will be embellished elsewhere, what we

wish to count are these unique terms of X.

An étale cover of an algebraic scheme X is a set of jointly surjective étale morphisms

{pi : Ui → X}

which are locally of finite type, i.e there exists a covering of X by open affine subsets Xj = SpecBj ,

and each the inverse image of each Xj in Ui can be covered by affine open subsets Ui,j,k = SpecAi,j,k,

with Ai,j,k a finitely generated Xj-algebra.

From this fairly convoluted definition, we can recognize that one étale site of a scheme X is

the slice category of Sch ↓ X equipped with the coverage J given by the étale covers. This defines

the big étale site on X.

Remark. Now that we have a notion of sites, we are equipped with a working notion of topology in

terms of coverage and sheaves. In particular, now that we have a good notion of étale morphisms,

we can define an étale topology defined as follows:

For a space X in some appropriate category C, consider Et ↓ X as the subcategory of C ↓ X.

In particular, the objects we consider are etale morphisms U → X. Then an étale covering

(ϕi : Ui → U)i∈I

is a covering of U if U = ϕi(Ui), in which case was say that (ϕi) is a surjective family. We define

an étale neighborhood of point x is simply an étale morphism ϕ : U → X such that there is some

u ∈ U . For our needs, we consider a covering J that simply picks some surjective families (ϕi) of

varieties or schemes to form a site (Et ↓ X,J ), which we denote by Xét. The sheaves on this site
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that we’re interested in are Ab valued, and those are precisely the pre-sheaves such that

F(U)→
∏
i∈I
F(Ui) ⇒

∏
(i,j)∈I×I

F(Ui ×U Uj)

holds for all coverings.

It remains to show towards our goal of proving the Weil conjectures that Sh(Xét) is an abelian

category with enough injectives, so that Hr(Xét;F) can be computed as the derived functor coho-

mology. When consider abelian group valued sheaves, clearly Sh(Xét) form an additive category.To

see that this is an abelian category, simply regard the map from the co-image of a morphism in

Sh(Xét) to its image; such a map is an isomorphism on its stalks, and hence is an isomorphism

between morphisms. Thus we see that Sh(Xét) is abelian.

Now, since Sh(Xét) and Sh(Yét) are topoi for any schemes or varieties X and Y , a morphism

π : Y → X induces a geometric morphism between Sh(Xét) and Sh(Yét), namely π∗ a π∗ : Sh(Yét)→

Sh(Xét).
89 While it is clear that π∗ is exact on pre-sheaves, it is generally not right exact for sheaves;

crucially, π∗ will be exact if π is a finite map or a closed immersion.

Finally, let F ∈ Ob Sh(Xét). For any x ∈ X, we can choose a geometric point ιx : x̄→ X with

its image x and an embedding Fx̄ ↪→ I(x) of the abelian group Fx̄ into an injective abelian group

via some pre-sheaf P, from which we find that ιx∗(I(x)) is injective.10 Since products of injective

objects are injective,
∏
ιx∗(I(x)) will define an injective sheaf, here denoted by I. In this manner,

we can construct an embedding for any sheaf F on Xét as the composition of the natural inclusions

F ↪→ P∗ ↪→ I. Thus, we see that we have enough injectives.

8For clarity, consider the direct image of any presheaf F on Yét and étale U → X by

π∗F(U) = F(U ×X Y )

Since U ×X Y → Y is étale, it follows that π∗F is a pre-sheaf on Xét. Moreover, if F is a sheaf, then π∗F is a sheaf
as well, as we can restrict π∗ from PSh(Yét) to Sh(Yét).

9To check adjointness, we can simply define the pushforward π∗ of sheaves F in terms of the sheafification functor
applied to to the colimit of F over the following diagrams of étale maps:

V U

YX

10As a reminder, Fx̄ = (ι∗F)(x̄) for any geometric point.
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Finally, we observe that we have the following change of basis theorems:

Theorem 10. (Proper Base Change Theorem)Let π : X → S be proper, and let Y = X ×S T

be the pull-back for some morphism f : T → S, i.e.

Y X

ST

f ′

ππ′

π

Then for any torsion sheaf on X, there is a canonical isomorphism:

f∗(Rrπ∗F)→ Rrπ′∗(f ′∗F)
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2.2 Classifying Topoi

Remark. The idea of classifying structures is not a new one unique to the predilections of topos

theorists. Indeed, one of the principle activities of a research mathematician is the classification of

certain structures (or theories) up to some notion of equivalence, be it homotopy, or isomorphism, or

path equality. However, topos theory provides mathematicians with a framework for describing new

classifying structures, namely by classiying structures over a topos by maps into another, suitably

constructed topos.

In one sense, all topoi classify some structure by virtue of the fact any topos is equipped with

geometric morphisms. To that end, once we’ve defined a classifying topos, I’ll give a few examples

of a classifying topos.

Definition 2.13. Let E and F be two topoi. Then Hom(E,F) is a category whose objects are

geometric morphisms f : E→ F and whose morphisms are natural transformations f∗ → g∗.

Definition 2.14. Let T by a collection of axioms that we wish to describe some structure. By

convention, we denote the T-models in E by M .11 The functor M(E,T) is a contravariant set-

valued functor of E for any arbitrary T, which takes E to the set of all T−models in E, and where the

inverse image of a geometric morphism f : F→ E will carry any T−model M in E to a T−structure

f∗M in F.12

Definition 2.15. Suppose that T is a geometric theory with a given signature σ. The classifying

topos for T is some Grothendieck topos B(T) over Sets, such that there is the following natural

equivalence of categories κE : Hom(E,B(T)) ∼=M(E,T), i.e.

Hom(E,B(T)) M(E,T)

Hom(F,B(T)) M(F,T)

κE

Hom(f,B(T))

κF

− ◦ f

11These are alternatively all such T−structures in a topos E.
12To convince yourself this works, consider the geometric morphism over Sets.
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commutes. A rather powerful result of this naturality is that for every geometric morphism f ,

κF(f∗M) ∼= κE(M) ◦ f .

Remark. Much of the initial impulse behind this project has been inspired by the following theorem:

Theorem 11. Suppose that T is a geometric theory. Then T has a classifying topos.

Example 2.2.1. (Object Classifiers)A prototypical classifying topos is a Grothendieck topos

called the object classifier, denoted S[U ] with the property that for any cocomplete topos E,

there is an equivalence between Ob E and f : E → S[U ], i.e. there is an natural equivalence

cE : E
∼→ Hom(E,S[U ]) sending X ∈ Ob E to the characteristic geometric morphism E→ S[U ].

Example 2.2.2. While the previous example is a relatively nice example of a classifying topos, the

prototypical (and for this paper, the most important) example of classifying algebraic and geometric

structures by their maps into a given space comes from topology. While the study of cohomology

developed in part by research into classifying fibrations using the tools of Galois theory,13 the

classifying space for cohomology, or the Eilenberg-Mac Lane space classifies the cohomology classes by

assigning them to a map from the underlying space X to the Eilenberg-Mac Lane space. Specifically,

this is a classification of every n−dimensional cohomology of any space X to a unique map up to

homotopy.

The traditional, nonsingular cohomology functors are defined defined as bi-functors

Hn(−;−) : Top×Ab→ Ab

that are contravariant with respect to topological spaces X and covariant for spaces G. Rather

importantly, for any f, g ∈ HomTop(X,Y ), if f ' g, then they induce the same group cohomology

homomorphism, so that the Eilenberg-Mac Lane space, denoted by K(G,n) for each cohomology

functor Hn(−;G), is a space such that Hn(K(G,n);G) ∼= HomAb(G,G). With some work, one

shows that every n-dimensional cohomology class for any topological space X arises by pulling back

the universal cohomology class γn ∈ Hn(K(G,n);G), along the map X → K(G,n). From here, we

can use K(G,n) to construct new cohomology operations. Now, one of the key steps to proving the

13I have Postnikov towers in mind.
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Weil conjectures (from the point of view of intuitionistic type theory) begins with the recognition

that although there are many species of cohomology, many of them can be captured by the following

definition:

Definition 2.16. Given an (∞, 1)−category H with objects X and A, an intelligible A-cohomology

of X is defined in terms of the (∞, 1)-categorical hom-space H(X,A), which is regarded as an

ω−groupoid. In particular, cocycles on X with coefficients in A are c ∈ Ob H(X,A), and the

coboundaries are arrows δ ∈ Ar H(X,A). The A-cohomology set of X is defined to be the set

of connected components of π0H(X,A), i.e. H(X;A) := π0H(X,A), and for any A-cocycle c on X

and B-cocycles k on A, the class of the composite cocycles, denoted [k(c)] and given by

[k(c)] := [k ◦ c] ∈ H(X;A)

is the characteristic class of c with respect to k.

If A admits deloopings to objects in an ω−groupoid BnA, then the A-cohomology of degree

n is the set of connected components of the ω-groupoid from X to the objects in ω−groupoid BnA,

i.e.

Hn(X;A) := π0H(X,Bn(A))

Noticeably absent from this definition is the notion of cochains, which arise when working

within specific models for H(X,A) determined by objects A that are components of a spectrum

object in Stab H.14

2.2.1 Étale cohomology

Remark. Building off of our discussion of abelian cohomology in Example 2.2.2, Γ(Xét,−) : Sh(Xét)→

Ab is the global section functor defined by the mapping F 7→ Γ(X,F). Clearly Γ(Xét,−) is co-

variant, and moreover, it is left exact. Because this functor is left exact, we can intelligibly discuss

the cohomology of étale sheaves. Most importantly, it is known that there is a spectral sequence

relating the derived functor of étale cohomology to the familiar Čech cohomology theory,so that the

14This is a very wonky way of saying that given Σ∞ a Ω∞ : Stab H → H, where Ω∞ is the canonical forgetful
functor whose left adjoint Σ∞ freely stabilizes any object of H, so that A ≡ En :≡ Ω∞ ◦ ΣnE.
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cohomology theories relevant to the proof of the Weil conjectures can actually be computed.

Definition 2.17. Suppose that Xét is an étale site and Γ(Xét,−) is the global section functor. We

then set Hr(Xét;−) := RrΓ(Xét,−), so that the rth étale cohomology functor is simply the rth

right derived functor of the global section functor. Thus it should be clear how Hr(Xét;−) acts on

sheaves F . Given F and an injective resolution I•, we first apply Γ(Xét,−) to I• to obtain the

following complex:

Γ(Xét, I0)→ Γ(Xét, I1)→ Γ(Xét, I2)→ · · ·

From here, we can apply Rr to recover the appropriate rth cohomology group. In particular, these

functors are uniquely determined up to isomorphism.



Chapter 3

Weil Cohomology Theories and the

Proof of the Weil Conjectures

One rather remarkable fact about Riemann’s original zeta function

ζ(s) =

∞∑
n=1

1

ns
(3.0.1)

is that it has a deep connection with prime numbers, as exhibited by the following identity:

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
(3.0.2)

This fact was proven by Euler for <(s) > 1, and relies on little more than elementary facts about

geometric series and the fundamental theorem of arithmetic. Among the remarkable properties of

zeta functions is there is a functional equation, which in some cases captures topological information.1

In the case of Equation (3.0.2), this functional equation is given by

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) (3.0.3)

1This is certainly the case with the Weil conjectures, and non-singular projective varieties over fields of positive
characteristic.

55
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With this functional equation, it can be shown that ζ(s) has zeros for s ∈ 2Z, called trivial zeros.2

However, in stark contrast to these trivial zeroes, characterizing the set of the non-trivial zeros for

ζ(s) is currently one of the greatest unsolved problems in mathematics, the Riemann hypothesis.

This problem has attracted much research attention over the last century and a half, and the study

of zeta functions has found much application across many different areas of geometry ranging from

complex analytic geometry to arithmetic geometry.

One example of this reach is the study of the class of meromorphic zeta functions on the

complex plane that behave like analytic continuations of traces of powers for suitable differential

operators H, e.g.

s 7→ ζ(s); s 7→ Tr

 1

H


s

(3.0.4)

For sufficiently well behaved H, such as Feynman propagators, these sums are in the form s 7→∑
λ

λ−s, where the eigenvalues express vacuum amplitudes.

Dedekind zeta functions are among the earliest generalizations of the Riemann zeta function,

generalizing ζ from Q to arbitrary number fields K and their rings of integers OK . Analogously, just

as one considers Dedekind zeta functions to study arbitrary number fields, one can consider Weil

zeta functions to study certain function fields.

The Weil zeta functions are of particular interest to this project, both as the inspiration for

topos theory and the source of inspiration for the tools of modern algebraic geometry (schemes), but

also in their own right as the motivation for étale cohomology, as well as for the practical purpose

of discerning the number of solutions for polynomial equations over finite fields.

A Weil zeta function,

ζ(X; t) = exp

∑
m=1

Nm
tm

m

 (3.0.5)

is a zeta function for arithmetic varieties X0 over finite fields Fq with algebraic closure F, and where

Nm is the number of points in X = X0 ×Fq F, the corresponding scheme over F, which are rational

over the field Fqr , i.e. they lie in Fqr . Weil conjectured that the Weil zeta function crucially satisfies

the following four properties:

2This fact follows rather immediately by considering the value of sin
(
πs
2

)
for these values s.



57

1. (Betti Numbers) Define the ith Betti number βi = βi(X) to be the degree of Pi(X; t). Then

χ =
∑

(−1)iβi. If X has a lift to a variety Y of characteristic zero, then βi is precisely the ith

Betti number for Y in the traditional sense.

Remark. Importantly, for a space Y , the rth Betti number refers to the rank of the rth homology

group of Y . Classically, these correspond to a measure of higher-dimensional connectivity of

Y , and is related to the Euler characteristic. That the classical notions hold in the case of

non-singular projective varieties is an important geometric fact.

2. (Rationality) ζ(X; t) is the quotient of polynomials Pi(X, t) with rational coefficients, given

by

ζ(X; t) =
P1(X; t) · P3(X; t) · . . . · P2n−1(X; t)

P0(X; t) · · ·P2n(X; t)
(3.0.6)

3. (Functional Equation) Where χ is the self intersection number of the diagonal ∆ of X ×X,

ζ(X;
1

qnt
) = ±qnχ/2tχζ(X; t) (3.0.7)

4. (Analogue of Riemann Hypothesis) Pi(X; t) =
∏

(1−λijt), and λij are algebraic integers with

|λij | = qi/2.

Although one can use diverse techniques to prove these conjectures in individual cases, a great

deal of formal machinery is required to prove these conjectures for the appropriate arbitrary varieties.

The pursuit of proof for the conjectures can be characterized as a search for the right cohomology

theory for varieties, such that the cohomology yields both the correct Betti numbers as well as

having its coefficients in a field of characteristic zero. This latter fact is of immense importance, as

it allows one to make use of the facts about the cohomology varieties over the complex numbers,

among them the Comparison Theorem:

Theorem 12. (Comparison Theorem) Let X be a non-singular variety over C. Then, for any

finite abelian group Λ, and r ≥ 0,

Hr(Xét; Λ) ∼= Hr(Xcx; Λ)
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Another crucial result from complex geometry is the Lefschetz fixed point formula for a regular

map ϕ : X → X, where X is a complete nonsingular variety over an algebraically closed field k:

(Γϕ ·∆) =
∑

(−1)rTr(ϕ|Hr(X;Q`)) (3.0.8)
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3.1 Weil Cohomology Theories

Grothendieck’s most crucial contribution to proving these conjectures was the observation that a

Weil cohomology theory is a pre-requisite for proving the conjectures, and his development of one

such cohomology theory, the `-adic cohomology, which is defined as follows:

Definition 3.1. Let X be a scheme of finite type over an algebraically closed field k of characteristic

p ≥ 0 and let ` 6= p be a prime number. We define the `-adic integers as the projective limit

Z` = lim
←−n

Z/`nZ

and let the `-adic numbers Q` be the quotient field of Z`. The `-adic cohomology of X is then defined

as:.

Hq(X;Q`) = lim
←−n
Hq(Xét;Z/`nZ)⊗Z` Q`

Throughout this chapter we detail material invoked in the proofs throughout Part II. In par-

ticular, this chapter sketches the properties of a Weil cohomology theory, illustrating how `−adic

cohomologies are one instance of such a theory. This material is necessarily prior to the proof of the

Weil conjecture, and so in order to achieve the long-term goal of a formally verified proof of the Weil

conjectures, these results ought to be formulated in some internal language as geometric formula, as

described in Chapters 2 and 3.

Definition 3.2. A Weil cohomology theory is a contravariant functor H∗ taking nonsingular

projective varieties X of dimension n to graded K-algebras, where K is a field of characteristic zero,

such that H∗(X) is a graded K-algebras satisfying the following:

1. For r ∈ d2de, Hr(X) are finite dimensional K-vector spaces;

2. Hr(X) = 0 for r /∈ d2de;

3. H2d(X) ∼= K;

4. (Künneth Formula) H∗(X)⊗H∗(Y ) ∼= H∗(X × Y );

5. (Poincaré Duality) Hr(X)×H2n−r(X)→ H2n(X) ∼= K;
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6. (Cycle Maps) There exists γX : Cr(X)→ H2r(X), where Cr(X) is the free group generated

by prime cycles3 of codimension r, such that γX satisfies certain compatibility conditions with

respect to the functorality of H, the Künneth formula, and Poincaré duality, and such that

γX : Z ↪→ K if X is a point.

Some authors extend these to the Lefschetz axioms:

7. For any smooth hyperplane section j : W ⊂ X and r ≤ n − 2, j∗ : Hr(X) ∼= Hr(W ), and j∗

monic for r ≤ n− 1;

8. Further, for ω = γX(W ) ∈ H2(X), the Lefschetz operator L : Hr(X) → Hr+2(X) is defined

by x 7→ x · ω, and Lr : Hn−r(X)→ Hn+r(X) is an isomorphism for r ∈ dne\{0}.

With the proof of the Weil conjectures in mind, ideally this chapter would be devoted to

justifying how we get a Lefschetz trace formula for `−adic cohomology functor Q`. In turn, this

means showing that we have a Künneth formula, Poincaré duality, and a good cycle map. However,

due to time constraints, this chapter is mostly left as exposition with occasional proofs. Many of

the results that we admit here should present reasonably attainable goals for future work.

For some commutative ring R with unity, denote the group of singular p-cochains of X with

coefficients in R by Sp(X,R) = Hom(SP(X), R). Furthermore, let T : ∆p+q → X be a singular p+ q

simplex. Then, we define the map

Sp(X,R)× Sq(X;R)
^−→ Sp+q(X,R)

by

〈cp ^ cq, T 〉 = 〈cp, T ◦ l(ε0, . . . , εp)〉 · 〈cq, T ◦ l(εp, . . . , εp+q)〉 (3.1.1)

where the cochain cp ^ cq is the cup product of the cochains cp and cq, and where the mapping

T ◦ l is just the restriction of T to the faces ∆p and ∆q of ∆p+q for (ε0, . . . , εp) and (εp, . . . , εp+q)

respectively.4 It can be shown that this definition is bilinear and associative, and moreover, that it

3Recall that a prime cycle on X is an irreducible, closed subvariety.
4This requires that we define l(w0, . . . , wp) to be the linear singular simplex mapping εi into wi for 0 ≤ i ≤ p.
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induces such an operation on

Hp(X;R)×Hq(X;R)→ Hp+q(X;R)

where the cohomology class {z0} is the unity element.

Throughout this paper, we denote the cohomology ring of X with coefficients in a commutative

ring with identity R by H∗(X;−) = ⊕Hi(X;R), where the cup product turns this group into a ring

with a unity element.

Definition 3.3. A perfect pairing is an R-linear isomorphism of R modules φ : M → HomR(N,L)

such that φ(m)(n) := e(m,n), where e : M ×N → L is an R-bilinear mapping satisfying

1. e(rm, n) = e(m, rn) = re(m,n)

2. e(m1 +m2, n) = e(m1, n) + e(m2, n)

3. e(m,n1 + n2) = e(m,n1) + e(m,n2)

for any r ∈ R, m,m1,m2 ∈M and n, n1, n2 ∈ N .

The following lemma, found in [8], Appendix C, Lemma 4.3, will be necessary for proving the

functional equation:

Lemma 13. Let φ : V × W → K be a perfect pairing over a field K. Let f ∈ EndK(V ) and

g ∈ EndK(W ) and λ ∈ K× such that for all x ∈ V and y ∈W ,

φ(f(x), g(y)) = λφ(x, y)

Then

det(id − tg) =
(−1)dλdtd

det(f)
· det(id − f

λt
)

and

det(g) =
λd

det(f)
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Remark. This lemma will become useful when paired with the assumption Poincaré duality and the

existence of a perfect pairing between cohomology groups regarded as vector spaces over Q`.
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3.2 Good Cycle Maps

In order to associate a cohomology class to an algebraic cycle on a variety, we require the existence

of a good cycle map

cl∗X : CHr(X;−)→ Hr(X;−)

The rest of this section explores what this actually entails.

Notation. First, we fix our notation. Let k be an algebraically closed field of characteristic p and X

be a non-singular variety over k. Let Λ = Z/`nZ for `, n ∈ Z+ such that ` 6= p. Finally, set

H∗(X; Λ) :=
⊕
r≥0

H2r(X; Λ(r))

such that H∗(X; Λ) is a ring under the cup product. Eventually, we will want to have H∗(X;Q`) :=⊕
r≥0

H2r(X;Q`(r)).

Remark. With Λ = Z/`nZ, n ∈ Z+ as above, and any ring R such that n is a unit in R, we define

µn(R) to be the group of nth roots of unity in R, and

µn(R)⊗r =


µn(R)⊗ · · · ⊗ µn(R) r copies, r > 0

Λ r = 0

HomΛ(µn(R)⊗−r,Λ) r < 0

We note that the rth-twist of Λ, Λ(r) is the sheaf on Xét such that for any étale and affine U → X,

Γ(U,Λ(r)) = µn(Γ(U,OU ))⊗r

Notably, if the ground field of X, contains the nth roots of unity, then each sheaf is isomorphic to

the constant sheaf of Λ and the choice of our primitive root of unity determines isomorphisms

Λ(r) ∼= Λ

for all r, so that each sheaf Λ(r) is locally constant.
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In order to introduce the notion of Gysin sequences (and maps), we admit the following

theorem:

Theorem 14. Let k be an algebraically closed field, and let Z be a nonsingular subvariety of X,

such that every connected component of Z has codimension c in every corresponding component of

X. For any locally constant sheaf F of Λ-modules on X,

Rri!F ∼= (i∗F) r = 2c

and otherwise

Rri!F = 0

Notation. Let (Z,X) be as in the theorem. Then we say (Z,X) is a smooth pair. We set U = X\Z,

and denote the inclusion of Z in X by i and the inclusion of U in X by j. For a sheaf F on X, we

define F ! to be the largest subsheaf of F with support on a closed sub-variety Z of X, so that for

any étale map ϕ : V → X, we find for f : F → j∗j
∗F that

F ! = ker(f)

by

F !(V ) = Γϕ−1(Z)(V,F) = ker(F(V )→ F(ϕ−1(U)))

Finally, it is natural to regard i!F as the sheaf F restricted to Z.

Definition 3.4. For X a nonsingular variety over an algebraically closed field k, let

C∗(X) := ⊕Ci(X),

where Ci(X) are the free abelian groups generated by the prime cycles of codimension i whose

elements are the algebraic cycles of codimension I on X. Then the quotient CHr(X; Λ) of C∗(X) by

rational equivalence becomes a ring relative to the intersection product called the Chow ring. In
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particular, there is a canonical homomorphism of graded rings

cl∗X : CHr(X; Λ)→ Hr(X; Λ)

which for our purposes will be given by

clr : Cr(X)→ H2r(X; Λ(r))

which is defined as follows:

Let Z be a prime cycle in X with codimension r and let Y be the singular locus of Z. There

is an isomorphism

H2r(X; Λ)Z ∼= H2r(X\Y ; Λ)Z\Y

from which we define clX(Z) to be the image of 1 under the following mapping:

Λ ∼= H0(Z\Y ; Λ(r)) ∼= H2r(X\Y ; Λ(r))Z\Y ∼= H2r(X; Λ(r))Z → H2r(X; Λ(r))

Since we’ve defined this for the unit, we can extend this linearly to obtain the desired homomorphism.

For the purposes of the proof of the Weil conjectures using `-adic cohomology classes, what

this really entails is that we prove there exist s a canonical homomorphism of graded rings such that

cl∗X : CH1(X; Λ) → H2(X; Λ(1)), where Λ = Z/`nZ for ` 6= p, where p is the characteristic of the

ground field k. Notably, we will be able to extend these maps to the cohomologies of Z` and Q`.

Lemma 15. Suppose (ei) is a basis for Hr(X;Q`), and suppose (fi) is a basis of Hr(X;Q`) that

is dual relative to the cup-product with (ei), such that ei ^ fj = δije
2n. Then for any regular

ϕ : X → X, with induced φ∗ : Hr(X;Q`)→ Hr(X;Q`),

clX×X(Γϕ) =
∑

ϕ∗(ei)⊗ fi

Proof. First, we notice that (fi) forms a basis for Hr(X;Q`) as a Q`-vector space. Then, since

H∗(X ×X;Q`) ∼= Hr(X;Q`) ⊗ Hr(X;Q`), we can regard the (fi) as also forming the basis for a
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Hr(X;Q`)-module. Thus

clX×X(Γϕ) =
∑

ai ⊗ fi

for unique elements ai ∈ Hr(X;−). Then, since p∗(clX×Y (Γϕ) ∪ q∗(y)) = ϕ∗(y),

ϕ∗(ej) = p∗((
∑
i

ai ⊗ fi) ∪ (1⊗ ej)) = p∗(aj ⊗ e2n) = aj
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3.3 Künneth Formulae

Although obscure, it is known that for groups G and H that the extension functor Ext(H,G) not

only measures how much Hom(H,G) fails to be exact, but quite literally does so by giving the set

of isomorphism classes of extensions of G by H. We can parse this by considering these classes to be

described by short exact sequences

0→ G→ J → H → 0

with the obvious isomorphisms. This leads us to the following theorem:

Theorem 16. (Universal Coefficient Theorem) If C is a chain complex of free abelian groups

with homology groups Hn(C;−), then Hn(C;G) of the cochain complex Hom(Cn, G) is determined

by the split exact sequences

0→ Ext(Hn−1(C;−), G)→ Hn(C;G)
h→ Hom(Hn(C), G)→ 0

One special case of this theorem that is immensely useful concerns computing the cohomology

of a product space, which are reached in our relevant cohomology ring by means of the cup product.

When considering some notion of a product space, this result is then known as a called Künneth

formula. For now, we treat the following isomorphism as a black box:

Hr(X × Y ;E) ∼= Hr(X;E)⊗Hr(Y ;E)

from which we find

Hr(X ×X;−) ∼= Hr(X;−)⊗Hr(X;−)

by the pairing

p∗(a) ^ q∗(b) ∼= a⊗ b

where p, q : X × X → X are the canonical projection maps. Since Hr(X;Q`) = ⊕Hr(X;Q`), we

are thus working with a Q`-algebra. Even more remarkable, for any cohomology with similar formal
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properties to the `-adic cohomology, similar results to the Weil conjectures follow- these are Weil

cohomology theories. The full development of `−adic cohomology from [4] is beyond the scope of this

paper, although [14] develops the essentials in greater detail, and [8] concisely summarizes (most of)

the following key properties of `-adic cohomology, assuming that X is a smooth and proper scheme

of finite type over an algebraically closed field k of characteristic p ≥ 0:

• If X is a complete non-singular variety over an algebraically closed field k of characteristic

p 6= 0, X can be lifted to characteristic 0 if

1. there is a discrete valuation ring R with a field of fractions K of characteristic 0 and

residue field k;

2. a scheme π : χ→ S, with S = SpecR, which is proper and smooth over S whose special

fibre is X.

• For any complete nonsingular variety X0 over an algebraically closed field k of characteristic

> 0 that has been lifted to a complete nonsingular variety X1 in K, characteristic 0, then

Hq(X0; Λ) ∼= Hq(Xcm; Λ)

for all q, where Xcm is the associated complex manifold in the classical topology;

• By the comparison theorem, if X is smooth and proper over C, then

Hq(X;Q`)⊗Q` C ∼= Hq(Xcm;Q`)

• We regard the Hq(X;Q`) groups as a vector spaces over Ql. By the cohomology of complex

projective space, the Hq(X;Q`) are 0, except for 0 ≤ q ≤ 2n, where n = dimX. In particular,

if M is a module and X is a projective n-space over C, then

Hq(Pn(C);M) =

M q ∈ {0, 2, . . . , 2n}

0 otherwise.
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so it suffices to notice that we can regard Q` above as a module as Z` can be given a finitely

generated module M by the family (Mn, fn+1 : Mn+1 →Mn)n∈N such that

– for all n, Mn is a finite Z/`nZ module;

– for all n, the map fn+1 : Mn+1 →Mn induces an isomorphism Mn+1/`
nMn+1 →Mn

such that we can recognize M = lim
←−

Mn = lim
←−

Z/`nZ⊗Z` Q` = Z` ⊗Z` Q` = Q`, and so in this

case, we immediately are left with

Hq(Pn(C);Q`) =

Q` q ∈ {0, 2, . . . , 2n}

0 otherwise.

In general, when given the Q` sheaf, it is a sheaf of Q` modules. Since Z` ⊗Z` Q` as a module

over Z` is simply Q` as a one dimensional vector space, when working with the cohomology

of complex projective n-space, we only need to consider a single basis element. In general, we

will not be as lucky.

• Hi(X;Ql) is a contravariant functor in X;

• For all q, r, there is a cup-product structure

Hq(X;Q`)×Hr(X;Q`)→ Hq+r(X;Q`)

• (Poincaré duality) H2n(X;Q`) is 1-dimensional and the cup-product pairing

Hq(X;Q`)×H2n−q(X;Q`)→ H2n(X;Q`)

is a perfect pairing for each q ∈ {0, 1, . . . , 2n};

• (Lefschetz fixed point theorem) Let f : X → X be a morphism with isolated fixed points. For

each fixed point x ∈ X with multiplicity 1, let

N(f,X) =
∑

(−1)qTr(f∗;Hq(X;Q`))
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where f∗ is the induced map on the cohomology of X;

• If Z is a subvariety of codimension q, then associated to Z is a cohomology class η(Z) ∈

H2q(X;Q`), which is a homomorphism from the Chow ring CH(X) to the cohomology ring

H∗(X;Q`). If x̄ ∈ X is a closed point, then η(x̄) ∈ H2n(X;Q`) is nonzero.5

5This is detailed in section 23 in [14]. By linearity, we extend this map to cycles, and notice for future reference
that the intersection of cycles becomes the cup-product of cohomology classes.
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3.4 Poincaré Duality

As in the classical case, we let U denote an oriented, connected m−dimensional complex manifold.

Then there is a canonical isomorphism

Hr(U ;Z/nZ)c ∼= H2m−r(U ;Z/nZ)

and so by the duality of Hq(−;−) and Hq(−;−), this is rewritten as a perfect pairing

Hr(U ;Z/nZ)c ×H2m−r(U ;Z/nZ)→ H2m(U ;Z/nZ)c ∼= Z/nZ

after one chooses a primitive 4th root of unity.

Remark. For now, we’ll treat this as a black box, but for a nonsingular variety X of dimension d

over an algebraically closed field k, and for Λ = Z/nZ, where n is coprime to the characteristic of

k, where Λ(m) = µ⊗mn , there is a unique isomorphism

η(X) : H2d(X; Λ(d))c → Λ

which sends cl(P ) to 1 for any closed point P on X, called the trace map.

In particular, Poincaré duality gives us a non-degenerate pairing

Hr(X;Q`)×H2d−r(X;Q`)→ H2d(X;Q`) ∼= Q`

In general, we denote the canonical generator of H2d(X;−) by e2d, and treat the following items as

black boxes to be opened in a future module:

1. π∗ is uniquely determined by

ηX(π∗(y) ^ x) = ηY (y ^ π∗(x))

for x ∈ H2n−r(X; Λ(n))c, y ∈ Hr(Y ; Λ)
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2. If π : Y ↪→ Z is a closed immersion, then π∗ is the Gysin map where

π∗(1Y ) = clX(Y )

where 1Y is the identity element of H0(Y ; Λ) = Λ.

3. (π1 ◦ π2)∗ = π1∗ ◦ π2∗

4. If X,Y are complete, then for x ∈ Hr(X;−) and y ∈ Hs(X;−)

π∗(y ^ π∗(x)) = π∗(y) ^ x

Thus, for any regular map ϕ : X → Y and any y ∈ Hr(Y ; ), we find that

p∗(clX×Y (Γϕ) ^ q∗(y))
(2)
= p∗((1, ϕ)∗(1) ^ q∗(y))

(4)
= p∗(1, ϕ)∗(1 ^ (1, ϕ)∗q∗y)

(3)
= (p ◦ (1, ϕ))∗(1 ^ (q ◦ (1, ϕ))∗y)

= 1∗(1X ^ ϕ∗y)

= ϕ∗(y)



3.5. TRACE FORMULAE 73

3.5 Trace Formulae

Notation. From here on out, we fix the following notation. For any nonsingular variety X, and

regular map ϕ : X → X, Γϕ denotes the graph of ϕ and ∆ denotes the diagonal of X.

Theorem 17. (Lefschetz Fixed Point Formula) For any complete nonsingular variety X over

an algebraically closed field k, with regular map ϕ : X → X, then

(Γϕ ·∆) =
∑

(−1)rTr(ϕ|Hr(X;Q`))

Proof. Suppose {eri } is a basis for Hr(X;Q`) and that {f2n−r
i } is the dual basis for H2n−r(X;Q`).

Then with cl as above and Lemma 15, we have

cl(Γϕ) =
∑
r,i

ϕ∗(eri )⊗ f2n−r
i

and then, for the diagonal ∆,

cl(∆) =
∑
r,i

eri ⊗ f2n−r
i

=
∑
r,i

(−1)r(2n−r)f2n−r
i ⊗ eri

as a consequence of ⊗ inheriting the Z2−graded algebra structure6 of the ^ operation,i.e. for

homogeneous elements

eri ⊗ f2n−r
i = (−1)r(2n−r)f2n−r

i ⊗ eri

and since (−1)r(2n−r) = (−1)2nr−r2 = (−1)r, we find that

∑
r,i

(−1)r(2n−r)f2n−r
i ⊗ eri =

∑
r,i

(−1)rf2n−r
i ⊗ eri

6In fact, we ought to recognize the familiar exterior product, ∧ : H∗(M ;−)×H∗(M ;−)→H∗(M ;−).
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Then, when we take the product of cl(Γϕ) and cl(∆), by Poincaré duality, we find

clX×X(Γϕ ·∆) =
∑
r,i

(−1)rϕ∗(eri )f
2n−r
i ⊗ e2n

But
∑
i ϕ
∗(eri )f

2n−r
i =

∑
i(
∑
j ajie

r
j) · f

2n−r
i =

∑
i aiie

2n = Tr(ϕ∗|Hr(−;−))e2n, since eri · f
2n−r
j =

δije
2n, and so

clX×X(Γϕ ·∆) =
∑
r

(−1)rTr(ϕ∗|Hr(X;Q`))(e2n ⊗ e2n)

When we apply ηX×X from (1), to this expression, we get the trace function.

Finally, we admit the following useful proposition as a criterion for identifying when (ΓF ·∆)P =

1 for a fixed point P .

Proposition 18. Let X be a nonsingular variety, and let Y and Z be closed subvarieties of X.

Suppose that P is an irreducible component of Y ∩ Z. Then (Y · Z)P = 1 if

1. Y and Z are non-singular at P ;

2. TgtP (Y ) ∩ TgtP (Z) = 0;

3. dimY + dimZ = dimX.
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3.6 Some Brief Remarks On Lefschetz Pencils

Deligne’s proof of the Riemann hypothesis crucially rests on a geometric reduction argument and

the cohomological properties of Lefschetz pencils. This section exists to summarize some of what

these results that are required. First, we begin with the following definitions:

Definition 3.5. Let X0 be an even dimensional projective variety over Fq and let X be its extension

over F. For an embedding X ↪→ Pn, we take a linear subspace A ⊂ Pn of codimension 2, and denote

by D the space parametrizing the hyperplanes H ⊃ A. Crucially, D ∼= P1. We define an algebraic

variety

X∗ := {(x,H) ∈ X ×D | x ∈ H}

equipped with the natural maps. We call one of these maps, π : X∗ → D, a Lefschetz pencil.7

In proving the Riemann hypothesis we will be studying the cohomology of X∗ using these

pencils π. Specifically, we will study the higher direct images of the pencils by means of their Leray

spectral sequence,

Er,d2 := Hr(D;Rdπ∗Q`)

Moreover, since D ∼= P1, this amounts to studying

Er,d2 = Hr(P1;Rdπ∗Q`)

Towards the end of describing the proof of the Riemann hypothesis, we admit the following claims:

Claim 19. Rn−2π∗Q` is a constant sheaf on P1.

Proof. Admitted as a black box.

Claim 20. (Rn−2π∗Q`)u = Hn−2(Xu;Q`).

Proof. Admitted as a black box.

In order to describe the cohomology of a Lefschetz pencil, we will need a means of describing

monodromy at a critical point, whence the following formula:

7This name is inspired by the correspondence of fibres π−1(t) over t ∈ P1 with hyperplane sections Ht ∩ X, for
Ht ⊂ Pn.
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Theorem 21. (Picard-Lefschetz formula) Let n = 2m + 1 be the dimension of the fibre of a

pencil π. We denote the canonical epimorphism Is → Z`(1) by t. Then, with

t(σ)(x ^ δs)δs ∈ V (1 + (m− n) +m) = V,

we find that

σs ∈ Is

acts on V by

σs(x) = x± t(σs)(x ^ δs)δ

with the signing depending on n mod 4.

V the sheaf (Rnπ∗Q`). We have a filtration,

V ⊃ E ⊃ E ∩ E⊥ ⊃ 0 (†)

whose existence follows from the comments made in Chapter 3, section 5.

Remark. The existence of this filtration requires a greater discursion into Lefschetz pencils and the

cohomology of Lefschetz Pencils than this paper allows. However, the following dictionary will be

vital for understanding this filtration:

• π : X∗ → P1 is the map arising from a Lefschetz pencil;

• Let S ⊂ P1 denote the subset of the projective line such that Xs is singular;

• Set U = Sc = P1\S;

• Set π1(U) = πtame1 (U, η);

• Set Is to be the tame fundamental group at s;

• For now, we treat the following claim as a black box:

Claim 22. Where n is the dimension of the fibres of π, for r 6= n, n + 1, the sheaves Rrπ∗Q`

are locally constant.
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• Drawing from another black box, by the proper base change theorem, Rnπ∗Q`U is a locally

constant, and so Vη̄ becomes π1(U, η̄);

• Let E ⊂ V denote the space of vanishing cycles. In particular, Milne treats as a black box this

claim:

Claim 23. For each s ∈ S, there exists δs ∈ V (m) := V ⊗Q`(m), where m =
dim fibre− 1

2
.

From this claim, we generate E(M) as the subspace of V (m) generated by δs;

• E⊥ is the orthogonal complement of E in Hn(Xη;Q`) under the pairing map ψ : V × V →

Q`(−n). In particular, E⊥ := Hn(Xη;Q`)π1 .8

The underlying rationale of the geometric reduction in Deligne’s proof stems from the technique

of studying the hyperplane sections of a projective variety in order to study the cohomology of the

variety. In particular, this m

Theorem 24. (Weak Lefschetz- étale)Suppose X is a non-singular projective variety, and Y is

a smooth hyperplane section of X. Then for all r ≥ 2, there are maps

Hr−2(Y ;Q`)→ Hr(X;Q`)

which are compatible with the action of the geometric Frobenius on X extended to H(X;Q`) so that

1. For r = d+ 1, Hd−1(Y ;Q`)→ Hd+1(X;Q`) is surjective.

2. For r > d+ 1, Hr−2(Y ;Q`)→ Hr(X;Q`) is an isomorphism.

Finally, we will need the following result from Kazhdan and Margulis:

Theorem 25. For odd n, π : X∗ → P1 a pencil, η a generic geometric point, and S ⊂ P1 such that

XS is singular. Then the image π1(P1\S, η̄) in Sp(E/E ∩ E⊥, ψ) is open.9

8This is proved in [14], Proposition 32.2.
9We denote by Sp(E,ψ) is the symplectic group of ψ, i.e. the group of λ ∈ GL(E) such that ψ(λe, λe′) = ψ(e, e′)

for all e, e′ ∈ E. We can easily extend this notion to the quotient E/(E ∩ E⊥).



78CHAPTER 3. WEIL COHOMOLOGY THEORIES AND THE PROOF OF THE WEIL CONJECTURES



Part II

The Proof of the Weil Conjectures
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Chapter 4

The Statement of The Weil

Conjectures

The first thing to note about the Weil conjectures is that they’re statements made regarding a

rational function with some desirable properties that take non-singular projective varieties over the

algebraic closure of finite fields as an argument. Under the paradigm established in part I, we can

interpret this function as terms of type Q with free variables of type F in some category containing

fields as objects. However, from a more practical perspective, the first abstraction that needs to be

understood is what these functions, of the form

ζ(X0, t) := exp

 ∞∑
m=1

Nm(X0)
tm

m

 (4.0.1)

are describing in the classical sense.

Concretely understood, these functions are tracking the number of homomorphisms SpecFpm →

X, where p is a fixed prime and m ranges over Z+, X is the extension of a variety X0 over the

algebraic closure of Fq, and Nm(X0) is the number of rational points of X0 over the extension Fqm

of Fq of degree m. This is vital when one delves into the topos interpretation of these conjectures,

as one begins to track what is meant by a point or an element (that is, any map from the terminal

81
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object in a category of sheaves on sites). It goes without saying that some of the first insights that

can considered are drawn from facts about the formal power series ring, Q[[t]]. The conjectures are

as follows:

Conjecture 26. (The Weil Conjectures)We begin by fixing our notational conventions. First,

fix prime p ∈ Z, and then for any q = pa, with a ∈ Z+, for convenience we denote the the algebraic

closure of Fq by F. Next, for a non-singular, absolutely irreducible variety X0 over Fq, we let X

denote X0 as a variety of dimension d over Fq, such that X is connected. Then, we let ` be any

prime not equal to p. Notably, all of this information can be captured by the following triple (p, a,X0).

Finally, the specific conjectures are as follows:

(Generating Function)

Proposition 27. Given a triple (p, a,X0), we set q := pa. Then the number of rational points

on X0 over the extension Fqm of Fq with degree m is given by

Nm(X0) =
∑
r

(−1)rTr(Fm|Hr(X;Q`)) (4.0.2)

where F is the Frobenius map. The sequence (N1(X0), N2(X0), N3(X0), . . .) has as its corre-

sponding generating function, the zeta function ζ(X0, t) from Equation 4.0.1 satisfying:

∑
n≥1

Nm(X0)tm−1 =
d

dt
log ζ(X0, t) (4.0.3)

Remark. Traditionally, there are four Weil conjectures, and this is not one of them. However,

in the light of this proposition, the other conjectures are possible.

(Betti Numbers) First, some additional notation.

Notation. With the triple (p, a,X0), we set d = dimX0 and let r ∈ d2de. With m ∈ N, we

denote the characteristic polynomial of the associated Frobenius Fm with respect toHr(X;Q`)

by

Pr,m = det(id − Fmt|Hr(X;Q`)) (4.0.4)
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Furthermore, we note that each Pr,1(t) is polynomial of the form

Pr,1(t) =

βr∏
i=1

(1− λr,it) ∈ Q`[t] (4.0.5)

for r ∈ d2de, with λr,i the reciprocal of roots of Pr,1.

Theorem 28. (Betti Numbers) Set βr = degPr,1(t). Then the Euler-characteristic of X0

is χ =
∑

(−1)rβr. Furthermore, with X the extension of X0 to F, if X lifts to a variety Y in

characteristic zero, then with Y defined over a number field embedded in C (i.e., as a variety

over the complex numbers), each βr is the rth Betti number of Y .

(Rationality)

Theorem 29. For each triple (p, a,X0), and with characteristic polynomials and Betti numbers

as in Theorem 28, each Pr,1(t) can be written as the product of polynomials of the form

Pr,1(t) =

βr∏
i=1

(1− λr,it) ∈ Q`[t] (4.0.6)

for r ∈ d2de, so that Equation 4.0.1 can be expressed as the follows:

ζ(X0, t) =

2d∏
i=0

(Pi(X0, t))
(−1)i+1

(4.0.7)

Remark. This was actually the first of the conjectures to be proven. The original proof, from

Dwork [6] makes use of p-adic analysis, and is worth studying in its own right. However, it

was inadequate for proving the rest of the conjectures (in particular, the Riemann hypothesis).

The proof explored in this paper is from Grothendieck, and makes use of `−adic cohomology

theory.

(Functional Equation: Poincaré Duality)

Theorem 30. For any triple (p, a,X0), with βr and χ as in Theorem 28, ζ(X0, t) satisfies

ζ(X0, 1/q
dt) = ±qdχ/2tχζ(X0, t)
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with χ =
∑

(−1)rβr = (∆ ·∆).

(Riemann Hypothesis)

Theorem 31. For each Pr,1(t), the eigenvalues are algebraic integers such |λr,i| = qr/2.

Furthermore, the poles of ζ(X0, z) are on the lines <(z) = 0, 1, 2, . . .dimX and the zeroes are

on the lines <(z) = 1
2 ,

3
2 , . . . ,

dimX−1
2 .

Remark. This was the last of the conjectures to be proven. Deligne first proved this conjecture

in 1974 using Lefschetz pencils and an estimate argument. He proved a general form bounding

the weights of the pushforward of a sheaf. For spatial considerations, we will only provide a

broad overview of his first argument.

Remark. As mentioned in Chapter 3, each of these conjectures follow formally from the existence of a

suitable cohomology theory on algebraic variety, called a Weil cohomology theory. Moreover, the first

three conjectures follow more or less immediately given any such theory.1 Although throughout this

project we will work exclusively with étale cohomology theories, and will admit various properties

about these cohomology functors so as to focus on the main thrust of the proof, it is worth stressing

these are cohomologies which crucially satisfy conditions for the Lefschetz fixed point theorem. The

proof of the final conjecture, the Riemann hypothesis, can best be understood as an limit argument

that goes about bounding the eigenvalues of the Frobenius acting on Hr(−;Q`) for r = 0, 1, 2, and

appropriate, non-singular projective varieties X0.

1Well, I shouldn’t say immediately, but relative to the proof of the Riemann hypothesis, they appear with little
effort.



Chapter 5

The Proof of the Weil Conjectures

The proof presented can be made to apply to any Weil cohomology theories, although the results are

stated in terms of any `-adic cohomology such that ` 6= p. Assuming that X is a nonsingular, proper

scheme of finite type over an algebraically closed field k of characteristic p > 0, the properties we

will make use of are as follows:

• If X is a complete non-singular variety over an algebraically closed field k of characteristic

p 6= 0, X can be lifted to characteristic 0 if

1. there is a discrete valuation ring R with a field of fractions K of characteristic 0 and

residue field k;

2. a scheme π : χ→ S, with S = SpecR, which is proper and smooth over S whose special

fibre is X.

• For any complete nonsingular variety X0 over an algebraically closed field k of characteristic

> 0 that has been lifted to a complete nonsingular variety X1 in K, characteristic 0, then

Hq(X0; Λ) ∼= Hq(Xcm; Λ)

for all q, where Xcm is the associated complex manifold in the classical topology;

85
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• By the comparison theorem, if X is smooth and proper over C, then

Hq(X;Q`)⊗Q` C ∼= Hq(Xcm;Q`)

• For X = Pn, we regard the groups Hq(X;Q`) as vector spaces over Ql. By the cohomology of

complex projective space, the Hq(X;Q`) are 0, except for 0 ≤ q ≤ 2n, where n = dimX. In

particular, if M is a module and X is a projective n-space over C, then

Hq(Pn(C);M) =

M q ∈ {0, 2, . . . , 2n}

0 otherwise.

So in particular,

Hq(Pn(C);Q`) =

Q` q ∈ {0, 2, . . . , 2n}

0 otherwise.

• Hi(X;Ql) is a contravariant functor in X;

• For all q, r, there is a cup-product structure

Hq(X;Q`)×Hr(X;Q`)→ Hq+r(X;Q`)

• (Poincaré duality) H2n(X;Q`) is 1-dimensional and the cup-product pairing

Hq(X;Q`)×H2n−q(X;Q`)→ H2n(X;Q`)

is a perfect pairing for each q ∈ {0, 1, . . . , 2n};

• (Lefschetz fixed point theorem) Let f : X → X be a morphism with isolated fixed points. For

each fixed point x ∈ X with multiplicity 1, let

N(f,X) =
∑

(−1)qTr(f∗;Hq(X;Q`))

where f∗ is the induced map on the cohomology of X;
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• If Z is a subvariety of codimension q, then associated to Z is a cohomology class η(Z) ∈

H2q(X;Q`). The map η is a homomorphism from the Chow ring CH(X) to the cohomology

ring H∗(X;Q`). If x̄ ∈ X is a closed point, then η(x̄) ∈ H2n(X;Q`) is nonzero.1

1This is detailed in section 23 in [14]. By linearity, we extend this map to cycles, and notice for future reference
that the intersection of cycles becomes the cup-product of cohomology classes.
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5.1 Defining Nm(X0) By Expressing The Number of Rational

Points In The Extension Fqm of Fq of degree m in X0.

Proof. [Prop 27]This proof proceeds by induction, starting with a proof of the following claim,

before applying Theorem 17, to obtain the desired result.

Claim 32. N1 = (ΓF · ∆), i.e. the number of points of X0 with coordinates in Fq is equal to the

intersection of the graph of the Frobenius with the diagonal.

Proof. Letting F denote the closure of Fq, it is clear that an element a ∈ F will lie in Fq if and only

if aq = a. Thus, XF = X(Fq) simply by considering the description of the Frobenius in terms of the

coordinates of points. Furthermore, for a fixed point P of F , we find (dF )P = 0.2 As a consequence,

we find that 1 is not an eigenvalue of (dF )P .

Now, since ΓF and ∆ are both isomorphic to X0, we find that conditions (i) and (iii) of

Proposition 18 are satisfied, and since Tgt(P,P )(ΓF ) is the graph of (dF )P , and Tgt(P,P )(∆) is the

graph of idTgtP (X), condition (ii) holds (since 1 is not an eigenvalue). Thus by Proposition 18, we

have (ΓF ·∆)P = 1, and as each fixed point occurs with multiplicity 1, we find that N1 = (ΓF ·∆).

Claim 33. N1 =
∑
r

(−1)rTr(F |Hr(X;Q`))

Proof. This follows by application of the Lefschetz Fixed Point theorem to the previous claim.

Claim 34. XFm = X(Fqm)

Proof. The Frobenius map of X relative to X0,Fqm is simply Fm.

Thus the general case Nm follows. Hence,

Nm(X0) :=
∑
r

(−1)rTr(Fm|Hr(X;Q`))

We now verify the final claim.

2To see this, simply consider an affine neighbourhood of P , U0 = Specm A0, with A0 = Fq [x1, . . . , xn], from which

xi ◦ F = xqi . Thus (dxi)P ◦ (dF )P = (dxqi )P = qxq−1
i (dxi)P = 0.
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Claim 35. With ζ(X0, t) = exp

( ∞∑
m=1

Nm(X0) t
m

m

)
,

∑
m≥1

Nm(X0)tm−1 =
d

dt
log ζ(X0, t)

Proof. Immediately, we find log ζ(X0, t) =
∞∑
m=1

Nm(X0) t
m

m and by linearity,

d

dt

( ∞∑
m=1

Nm(X0)
tm

m

)
=

∞∑
m=1

Nm(X0)tm−1
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5.2 The Proof of the First Three Conjectures

5.2.1 Betti Numbers

The proof of Theorem 28 is a consequence of the following theorem:

Theorem 36. Fix k, an algebraically closed field of positive characteristic p, and K, a field of

characteristic zero. Now suppose that there is a lift from X0, a variety over k, to X1, a variety over

K. Then for any finite abelian group Λ, the following cohomology groups are isomorphic:

Hr(X0; Λ) ∼= Hr(X1,Kal ; Λ)

We admit this theorem for now, remarking only that the isomorphism between étale and

singular cohomologies extends from finite Λ ∼= Z/`nZ to Q` by passing to the limit of Z/`nZ and

then tensoring with Q`.

Proof. (Theorem 28)Recall that any complete non-singular variety X over an algebraically closed

field k of characteristic p 6= 0 can be lifted to characteristic zero if:

1. k is the residue field of some discrete valuation ring R with a field of fractionsK of characteristic

zero;

2. X is a special fibre for a proper and smooth scheme π : ρ→ SpecR.

We want to show given a lift from a variety X0 over an algebraically closed field k of positive

characteristic p to a variety Y over a field of characteristic 0, that the Betti numbers of X0 are

precisely the Betti numbers of Y . To that end, first suppose there is a lift with Λ = Z/`nZ, R an

appropriate3 discrete valuation ring, and ρ a non-singular, projective scheme over SpecR. Since we

can regard Q` in terms of locally constant sheaves, by the Theorem 4.

Hr(X;Q`) ∼= Hr(ρ×SpecR SpecC;Q`)

3This means that there is some maximal p ⊂ R such that R/p ∼= Fq .
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Furthermore, in applying Theorem 36, we find:

Hr(ρ×SpecR SpecC;Z/`nZ) ∼= Hr((ρ×SpecR SpecC)an;Z/`nZ)

after which we extend4 this result to find

Hr(ρ×SpecR SpecC;Q`) ∼= Hr((ρ×SpecR SpecC)an;Q`)

thus yielding a comparison result of the `-adic cohomology of X with the singular cohomology of

the lifting to C. Hence, with Y = (ρ ×SpecR SpecC)an, we find that the rth Betti number of Y is

precisely degPr,1(t), as desired.

5.2.2 Rationality

Before beginning this proof, we admit the following Lemma from Bourbaki, Algèbre, IV.5.

Lemma 37. Let k ⊂ K be fields, and let f(t) ∈ k[[t]]. If f(t) ∈ K(t), then f(t) ∈ k(t).

Proof. (Theorem 29) We first prove that ζ(X0, t) =
2d∏
i=0

Pi(t)
(−1)i+1

, before proving rationality.5

Claim 38. ζ(X0, t) = exp(
∑
m≥1

(
2d∑
i=0

(−1)iTr(Fm|Hi(X0;Q`))) t
m

m ).

Proof.

ζ(X0, t)
def
= exp

∑
m≥1

Nm(X0)
tm

m


Prop(27)

= exp

∑
m≥1

(

2d∑
i=0

(−1)iTr(Fm|Hr(X0;Q`)))
tm

m



Claim 39. ζ(X0, t) =
2d∏
i=0

(
exp(

∞∑
m=1

Tr(Fm|Hr(X;Q`)) t
m

m )

)(−1)i

.

4Recall, that Hr(X;Z`) := lim
−→n
Hr(X;Z/`nZ), and Hr(X;Q`) := Hr(X;Z`)⊗Z` Q`.

5By construction Pr,m ∈ Q`[t].
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Proof. Since we have just proven that ζ(X0, t) = exp(
∑
m

(
2d∑
i=0

(−1)iTr(Fm|Hr(X0; ))) t
m

m ) ,this follows

by moving the inner sum of exp(
∑
m

(
2d∑
i=0

(−1)iTr(Fm|Hr(X0; ))) t
m

m ) outside.

Finally,

Claim 40. If pϕ =
∏

(1 − cit) is the characteristic polynomial of an endomorphism ϕ of a vector

space V over k, then Tr(ϕm|V ) =
∑
cmi

Proof. This is standard linear algebra. We may assume there exists a basis B relative to which the

representation of ϕ is an upper triangular matrix with the ci in the diagonal (possibly by extending

k if necessary). Then, relative to this basis B, ϕm has cmi along the diagonal, whence the result.

Now, setting Pr(t) := Pr,1(t) =
∏

(1− λit), we use the formal series expansion of log, finding:

log((Pr(t))
−1) = −

∑
i

log(1− λit) =
∑
i

∞∑
m=1

λmi
tm

m
=

∞∑
m=1

∑
i

λmi
tm

m
=

∞∑
m=1

Tr(Fm|Hr(X;Q`))

Thus exp(Tr(Fm|Hr(X;Q`))) = exp(log(Pr(t))
−1) = (Pr(t))

−1, whence we can conclude:

ζ(X0, t) =

2d∏
i=0

(
exp(log(Pi(t))

−1)
)(−1)i

=

2d∏
i=0

(Pi(X0, t))
(−1)i+1

Claim 41. ζ(X0, t) is rational.

Proof. We have shown that ζ(X0, t) is a rational function with coefficients in Q`. By Lemma 37, we

find that it is a rational function with coefficients in Q. Hence, it is rational.

5.2.3 Poincaré Duality (The Functional Equation)

Before beginning our proof, we admit the two following propositions:

Proposition 42. Let π : X → Y be a proper map of smooth separated varieties of the same

dimension d over algebraically closed field k, with push-forward π∗ : Hr(X;Q`) → Hr(Y ;Q`) and
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pullback π∗ : Hr(Y ;Q`)→ Hr(X;Q`), for arbitrary r ∈ d2de. If π : X → Y is a finite map of degree

δ, then π∗ ◦ π∗ = δ, i.e. multiplication by δ in the cohomology group Hr(Y ;Q`).

Proposition 43. Let π : X → X be a proper map of smooth separated varieties over an algebraically

closed field k. If π : X → X is a finite map of degree δ, then:

1. π∗ acts as the identity on H0(X;−);

2. π∗ acts as multiplication by δ on H0(X;−).

With these two propositions, we are armed to prove Theorem 30.

Proof. (Theorem 30) Given X with dimX = d, first, we note that for the Frobenius F , F ∗ and

F∗ take Hr(X;Q`) to Hr(X;Q`). We first make the following mild claim:

Claim 44. F is finite morphism with degree qd.

Proof. First, for clarity, in the affine case of An, F is defined as the homomorphism of F-algebras

given by Ti 7→ T qi . Clearly, F[T1, . . . , Tn] is free of rank qn over the image of F , i.e. F[T q1 , . . . , T
q
n ].

In the general case, we choose a transcendence basis T1, . . . , Td for the function field Fq(X0) of

X0. We extend F to the homomorphism f : F(X)→ F(X). Thus

fF(X) ∩ F(T1, . . . , Td) = fF(T1, · · · , Td)

whence

F(X) = fF(X) · F(T1, . . . , Td)

Thus

[F(X) : fF(X)] = [F(T1, . . . , Td) : fF(T1, . . . , Td)] = qd

Next, we first admit6 the following pairing:

φ : H2d−r(X;Q`)×Hr(X;Q`(d))→ H2d(X;Q`)
ηX→ Q`

6In particular, this would just be an application of Poincaré duality



94 CHAPTER 5. THE PROOF OF THE WEIL CONJECTURES

which we simplify to

ϕ : H2d−r(X;Q`)×Hr(X;Q`(d))→ Q`

where Q`(d) is the dth Tate twist of Q`.

Claim 45. For any x ∈ H2d−r(X;Q`) and any y ∈ Hr(X;Q`),

ηX(F∗(x) ^ y) = ηX(x ^ F ∗(y))

Proof. This follows from the definition of the pullback of F .

Claim 46. The eigenvalues of F ∗|Hr(X;Q`) and F∗|H2d−r(X;Q`) agree.

Proof. This follows from the previous claim.

Now we make the following claims that we will use to describe Pi(1/q
dt):

Claim 47. det(F ∗ | H2d−r(X;Q`)) =
qdβr

det(F ∗ | Hr(X;Q`))
.

Proof. We apply Lemma 13, noting that βr describes the dimension of the domain of the perfect

pairing.

More explicitly,

Claim 48. P2d−r(t) =
(−1)βrqdβr tβr

det(F ∗ | Hr(X;Q`))
Pr(1/q

dt).

Proof. We apply Lemma 13.

Finally, with the relationship between eigenvalues of our F ∗ established, and our results from
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Theorems 28 and 29, we find

ζ(X0, 1/q
dt)

Thm29
=

2d∏
r=0

(Pr,1(1/qdt))(−1)r+1

47,48
=

2d∏
r=0

P2d−r,1(t)(−1)r+1

·
(−1)χqdχtχ

2d∏
r=0

det(F ∗ | Hr(X;Q`))(−1)r

= ±
qdχtχ

qdχ/2
ζ(X0, t)

= ±qdχ/2tχζ(X0, t)

as desired.
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5.3 The Structure of the Proof of the Riemann Hypothesis

I suppose it is appropriate at this point to mention that Deligne’s first proof of the Riemann hy-

pothesis in [5] was the basis for his Fields medal.7 Whereas the spark of this thesis is closer to the

spirit of Grothendieck’s approach to the Weil conjectures, which can be thought of as abstracting

the problem to the point where solving it becomes tractable, Deligne’s proof strikes one as consid-

erably more tangible, and closer to the spirit of the classical geometers. Very broadly put, his proof

consists of a very elegant (and highly nested) limiting argument. As mentioned earlier, the proof

of the Weil conjectures is like a matryoshka doll. Nowhere is this observation more apparent than

with the proof of the Riemann hypothesis. With the long term goal of realizing these proofs within

the framework of Intuitionistic Type Theory, one can be readily interpret this proof as an elegant

nesting of inductive results on constant sheaves.

Further, I must mention that while many of the components to the following proof have been

raised throughout this paper, there remain too many black boxes for me to suggest I will have pro-

vided anything resembling a completely satisfactory exposition of Deligne’s actual proof. Instead, I

have provided a reasonably comprehensive,8 albeit high-level, summary of the proof of the Riemann

hypothesis, starting with the geometric reductions demonstrating that it suffices to prove an ap-

proximate result for an equivalent statement of Theorem 31 with respect to the middle cohomology

groups of even dimension, and the mechanics by which one proves these remaining results. The

structure of the argument precedes as follows:

First, following Deligne in [5], one shows that it suffices to prove Theorem 31 in an equivalent

case, namely

Theorem 49. Let X0 be a nonsingular projective variety over Fq. Then the eigenvalues of F on

Hr(X;Q`) are algebraic numbers whose conjugates all have modulus qr/2.

That we can do this should strike the reader as fairly apparent, since what is under investigation

in Theorem 31 are the Pr,1 polynomials. After which we further reduce to the case of Fqm for m ∈ N.

This follows because the Frobenius F : X → X is defined relative to the field Fq, the Frobenius

7If for no other reason than to emphasize that his proof demonstrates some breathtaking mathematical artistry,
even when it points outwards to various results found scattered through SGAs 4, 4.5, 5, and 7.

8Modulo the material already present in this paper.
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Fm : X → X relative to Fqm is simply Fm, from which given an eigenvalue λ of F on Hr(X;Q`),

we have λm as an eigenvalue of Fm on Hr(X;Q`). We then further our reduction by proving the

following proposition:

Proposition 50. Assume that for all nonsingular projective varieties X0 of even dimension n over

Fq, every eigenvalue λof F on Hn(X;Q`) is an algebraic number such that

q(n−1)/2 < |λc| < q(n+1)/2)

for all complex conjugates of λ. Then Theorem 49 holds for all nonsingular projective varieties.

Remark. This result follows from the Künneth formula, since for any eigenvalue λ of F onHn(X;Q`),

λm will be an eigenvalue of F on Hnm(Xm;Q`). Then, by considering Fm so that the cohomology

group is of an even power, we find

q(mn−1)/ ≤ |λ|m ≤ q(mn+1)/2

After which we can then take the mth root and let m tend to ∞ over 2Z, finding that |λ| = qn/2.

At this point, we then begin an induction argument on the dimension of X0. In the base case

that dimX0 = 0, the result is obvious. Assuming the result holds up to arbitrary n, we then apply

Poincaré duality to eigenvalues λ of F on Hr(X;Q`) to find that qn/λ is an eigenvalue of F on

H2n−r(X;Q`).

It will then obvious that to finish the proof, it suffices to assume r > n. This will require a

proof of Bertini’s theorem, which shows that there is a hyperplane H in Pm such that Y := H ∩X

is a nonsingular variety. One then makes use of the Gysin sequence defined for (X,Y ), and because

X\Y will be affine, by the weak Lefschetz theorem, Hr(X\Y ;Q`) = 0 for r > n. In this way,

the Gysin map i∗ : Hr−2(Y ;Q`(−1)) → Hr(X;Q`) will be surjective for r > n. At this point,

one then inducts on the eigenvalues of F on Hr−2(Y ;Q`), finding that they are algebraic numbers

whose conjugates have modulus q(r−2)/2. Further, since F ◦ i∗ = q(i∗ ◦ F ), the eigenvalues of F on

Hr(X;Q`) will be algebraic numbers with conjugates qr/2

What will remain then is to show is the following theorem:
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Theorem 51. Let m ∈ N. For any nonsingular projective variety X0 of dimension n = 2(m + 1)

over Fq, the Frobenius acts rationally on Hn(X;Q`) such that every eigenvalue λ is an algebraic

number satisfying

q(n−1)/2 < |λ′| < q(n+1)/2 (?n)

for all complex conjugates of λ.

This proof follows from proving the following, crucial lemma:

Lemma 52. If V satisfies (?n) and W ⊂ V is stable under ϕ, then both W and V/W satisfy (?n).

Furthermore, if there exists a filtration

V ⊃ V1 ⊃ · · · ⊃ Vr ⊃ 0

that is stable under ϕ such that for all i, the associated endomorphism of Vi/Vi+1 defined by ϕ

satisfies (?n), then ϕ satisfies (?n).

It is prudent to state the following corollary, where ϕ is the geometric Frobenius, F :

Corollary 53. Suppose F is the geometric Frobenius, and both V ⊂ Hr(X;Q`) and W ⊂ Hs(Y ;Q`)

are both stable under F . Further suppose that φ is a Q` linear map such that for any v ∈ V ,

φ(F (v)) = q(r−s)/2F (φ(v))

Then,

1. If ϕ is surjective, (?) holds for V implies (?) holds for W ;

2. If ϕ is injective, (?) holds for W implies (?) holds for V .

After proving this lemma, we are able to assume there is a Lefschetz pencil for X0 of even

dimension, which will be rational over Fq. In order to make this induction proof tractable, one

first demonstrates that it is sufficient to prove that (?n) holds for varieties X∗ obtained from X by

blowing them up along A∩X, where A is an axis of a Lefschetz pencil π.9 This makes use of some of

9The actual proof is fairly elaborate, with the best, and possibly only source, still being [5]. One can find a high
level summary in [14], in the proof of Lemma 33.2, as to what needs to be shown.
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the desirable properties of Lefschetz pencils, namely that A crosses X transversally and that A∩X

is a nonsingular subvariety of codimension 2. The actual reason why this reduction is acceptable is

that the map ϕ : X∗ → X is a proper map, which allows us to use Theorem 4.

Notably, we establish the existence of a pencil π with only a finite number of singular fibres,

each fibre having only one singular point which is an ordinary double point. In analyzing the

cohomology of X∗, we account for the variation of these fibres by using the higher direct images of

the pencil π, Rnπ∗Q` so that we wind up studying the Leray spectral sequences of π,

Er,n2 := Hr(P1;Rnπ∗Q`)

Thankfully, there is an iterative process10 showing that if (?m) holds for the following:

1. E0,n
2 = H2(P1;Rn−2π∗Q`);

2. E2,n−2
0 = H0(P1;Rnπ∗Q`);

3. E1,n−1
1 = H1(P1;Rn−1π∗Q`).

then (?n) will hold for Hn(X∗;Q`) as desired. So we then proceed by proving (?n) for these three

cases as follows:

5.3.1 H2(P1;Rn−2π∗Q`)

The proof proceeds from facts about Lefschetz pencils, namely that Rn−2π∗Q` is constant on P1

and that (Rn−2π∗Q`)u = Hn−2(Xu;Q`). Thus, it suffices to prove (?n) for Hn−2(Xu;Q`). We do

this by taking these facts, and consider the induced cohomology sequence of

0→ j!j
∗Q` → Q` → i∗i

∗Q` → 0

where Y0 is a nonsingular hyperplane section such that X0\Y0 is affine. This allows us to apply

Poincaré duality and then the weak Lefschetz theorem to identify that

Hn−2(Xu\Y ;Q`)c ∼= Hn(Xu\Y ;Q`)∨ = 0

10Also, helpfully summarized in [14], but whose exposition is effectively scattered throughout the SGA.
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From this we can conclude that the corresponding map Hn−1(Xu;Q`) → Hn−1(Y ;Q`) must be

injective.11 Then induction on even n, with (?n) holding for Y , (?n) holds for X by Lemma 13.

5.3.2 H0(P1;Rnπ∗Q`)

The proof here makes use of an earlier assumption that the vanishing cycles are nonzero. In par-

ticular, one shows that Rnπ∗Q` is constant, and that H0(P1;Rnπ∗Q`) = Hn(Xu;Q`). Thus it

suffices to show (?n) for Hn(Xu;Q`). In order to do this, we make use of the weak Lefschetz the-

orem to find the surjective Gysin map Hn−2(Y ;Q`(−1)) → Hn(Xu;Q`), after which we simply

apply the induction hypothesis to hyperplanes Y ⊂ X. One may also prove this result as dual to

H2(P1;Rnπ∗Q`) result.

5.3.3 H1(P1;Rn−1π∗Q`)

The complicated technical machinery invoked in this proof is why a complete exposition of the Weil

conjectures has been omitted from this paper. The following is a high level summary of how one

begins to prove this result:

Step 1 First, with S denoting the set for which X∗ is singular, we choose u ∈ P1\S, and then verify

the existence of the following filtration

(Rn−1π∗Q`)u ⊃ E ⊃ E ∩ E⊥ ⊃ 0

where E is a finite dimensional Q`-vector space endowed with a continuous action of π1(U0)

of weight n, such that U0 is a nonsingular affine curve over Fq.

Step 2 Then, with U denoting the subset of P1 such that Xu is non-singular, we use the Picard-

Lefschetz formula to describe the filtration from Step 1 as a filtration of π1(U)-modules12

with the following corresponding filtration on (constant) sheaves

j∗Rn−1π∗Q` ⊃ E ⊃ E ∩ E⊥ ⊃ 0

11As the corresponding sequence is essentially 0→ A→ B → 0
12So that π1(U) = πtame1 (U, η̄)
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where E corresponds to E as a locally constant sheaf of Q` vector spaces, and j : U → P1.

Step 3 We apply j∗ to the filtration from Step 2, to find the following filtration of interest:

Rnπ∗Q` ⊃ j∗E ⊃ j∗(E ∩ E⊥) ⊃ 0

Step 4 Next, we verify that the first and third quotients of the filtration in Step 3 are constant.

Step 5 Next, we prove that for each quotient (?n) holds. We proceed by induction on E/E ∩ E⊥.

Because E/E∩E⊥ is a simple π1−module (hence, there is either no vanishing cycle in E∩E⊥,

or it is zero and E ⊂ E⊥), this amounts to even more case analysis. Within these two cases, in

the relatively trivial case where the vanishing cycles are in E, this argument consists of demon-

strating that there are exact sequences whose cohomology sequences are well behaved such that

F acts on Q`(m−n−1) as qn−m−1 = qn/2 (recall that we are inducing on m with n = 2(m+1)).

In the second case, the reduction proceeds by taking advantage of what I’ll informally refer to

as a transfer property of cohomology maps with the monic/epic universal mapping properties.

In particular, this entails constructing an epimorphism H1(P1; j∗E)→ H1(P1;Rn−1π∗Q`) and

a monomorphism H1(P1;Rn−1π∗Q`) → H1(P1; j∗(E ∩ E⊥)). The reduction proof consists of

demonstrating that it suffices to prove (?n) for H1(P1; j∗(E ∩ E⊥)).This proof of this result is

the following lemma:

Lemma 54. Let n ∈ Z, and with E as a π1(U0) module corresponding to a locally constant E

as above, assume that

1. For all closed points of x ∈ U0 (i.e. non-zero prime ideals), one has a Frobenius element

that fixes some prime ideal of the, whose inverse, Fx acts rationally on E;

2. There is a non-degenerate π1(U0)-invariant skew symmetric form

ψ : E × E → Q`(−n)

3. The image of π1(U) in Sp(E,ψ) is open in the `-adic topology.

Then
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• The eigenvalues of Fx on Ex have modulus (qdeg x)n/2.

• The action of F on H1(U ; E)c is rational, and its eigenvalues all have modulus ≤ qn/2+1.

• With j : U ↪→ P1, the action fo F on H1(P1; j∗E) is rational and the eigenvalues satisfy

qn/2 < |λ| < qn/2+1

Remark. What applying the main Lemma entails in either case is checking that for all closed

points, the Frobenius on E is rational, that there is a non-degenerate, π1 invariant, skew-

symmetric form ψ : E × E → Q`(−n), and that the geometric monodromy condition, which

requires the image of π1(U) in Sp(E,ψ) is open in the `-adic topology, holds. Each of these

requires its own separate, nested proof.

The reduction of the induction argument to this case follows from the proof thatH1(P1; j∗E)→

H1(P1;Rn−1π∗Q`) is a epimorphism, such that if (?n) holds for H1(P1; j∗E), then it will hold

for H1(P1;Rn−1, π∗Q`). Furthermore, since H1(P1; j∗E) → H1(P1; j∗(E ∩ E⊥)) is injective, if

(?n) holds in H1(P1; j∗(E ∩ E⊥)), it must hold in H1(P1; j∗E).



Chapter 6

A Verification of the Weil

conjectures for Pn

As one slightly non-trivial example of these conjectures, let’s work with a nice non-singular projective

variety, Pn.

Remark. Let X be a simply reduced scheme of finite type over a field k. We can think of points in

X in two ways:

1. Per the discussion in the preliminaries, X as above can be regarded as a topological space.

Denoting by Xcl the set of closed points, for each x ∈ Xcl, there is a local ring OX,x such

that OX,x/mx ∼= k(x), where the residue field k(x) is a finite extension of k by Hilbert’s

Nullstellensatz. Thus it would be sensible to define the degree of x as the index of the extension

from k to k(x), denoting as follows

deg(x) := [k(x) : k]

2. Alternatively, where K/k, the K-valued points of X can be described as follows. Let f ∈

HomFld(k,K), and denote by X(K), the set of points defined to be HomSpeck(SpecK,X) =

103
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∐
HomX↓k(k(x),K). We identify X(K) as the set of K-valued points.1

In particular, this second approach to points makes considerable sense when considering algebraic

extensions K/k. If f∗ ∈ X(K), where f∗ : Spec(K) → X, the point in X is the image of a unique

closed point in SpecK. Through some elementary hand-waving (wringing?) we can identify that

∐
x∈X

HomX↓k(k(x),K) =
∐

deg(x)|n

HomX↓k(k(x),K)

where n is the finite degree of the field extension. This way of thinking about fixed points allows

us to consider the Galois group Gal(Fqm/Fq) ∼= Z/mZ. So if deg(x) = d ≤ n, then the associated

stabilizer of any element x ∈ X will be isomorphic to Gal(Fqn/Fqd). Hence |HomX↓k(k(x), k)| = d.

It follows from this observation that

X(K) :=
∑
d|n

d · |{x ∈ Xcl | deg(x) = d}| (6.0.1)

Moreoever, this approach is sub-additive; if X =
m⋃
Yi and each Yi is a closed subset, then X(K) =⋃m

Yi(K), and crucially, if X is a disjoint sum of Yi, then X(K) =
∐
Yi(K) and

|X(K)| =
m∑
i

∑
di|ni

di · |{x ∈ Y cli | deg(x) = di} (6.0.2)

This result is fairly intuitive. Suppose that X is an affine line Ank . Then we notice X(Fqm) = (Fqm)n,

and hence |X(Fqm)| = |Fqm |n = qnm, i.e there are qnm points in Ank (Fqm). Then, since

Pnk = Ank
∐

Pn−1
k = . . . =

n∐
i=0

Aik

we find that

|Pn(Fqm)| = 1 + qm + q2m + . . .+ qnm =

n∑
i=0

qim (6.0.3)

If we consider X0 to be the n-projective variety over Fq, and X to be the corresponding variety over

1That SpecK is trivial is precisely the point; it defines a terminal object, which we can denote by 1, and this is
precisely the categorical notion of element, or more appropriate, a point in a space.
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the algebraic closure F, when we consider the Frobenius mapping F : X → X, defined by x 7→ xq,

we recognize that the hypersurface of X that is fixed by F corresponds to the Ai(Fq) for 0 ≤ i ≤ n,

while in general, the hypersurface fixed by the mth-iterate of the Frobenius Fm corresponds to

Aim(Fq). Thus, we have described the points fixed by Fm, denoted by Nm =
n∑
i=0

qim.

This approach was the most immediately sensible way to approach this problem; the geometry

is quite clear, however, it was done without explicit recourse to the `-adic cohomology in counting

the fixed points. It is imperative that we check this naive geometric approach is corroborated by

the `-adic cohomology that underlies the general proof.

In the interest of the general argument, we revisit the proof by considering that we satisfy the

criteria for lifting to characteristic 0. In particular, where R is the corresponding discrete valuation

ring with residue field Fq, we take the natural homogeneous fi(T0, . . . , Tn) ∈ R[T0, . . . , Tn] such

that modulo mR, the fi generate the homogeneous ideal of Pn, (0). Moreover, when regarded as

polynomials in K[T0, . . . , Tn], these fi define a variety Pn(K). This allows us to lift Pn(F) to Pn(K)

for any finite abelian group Λ (and hence, any Z/`nZ with m ∈ N) such that

Hr(Pn(F);Z/`nZ) ∼= Hr(Pn(K);Z/`mZ)

and thus, when taking the inverse limit

Hr(Pn(F);Z`) = lim
←−m
Hr(Pn(F);Z/`mZ) ∼= lim

←−m
Hr(Pn(K);Z/`mZ)

Furthermore, we can tensor both sides over Z` by Q`, whence

Hr(Pn(F);Q`) = lim
←−m
Hr(Pn(F);Z/`mZ)⊗Z` Q` ∼= lim

←−m
Hr(Pn(K);Z/`mZ)⊗Z` Q`

However, as mentioned in the earlier properties of `−adic cohomology, this is simply Q` as a 1

dimensional vector space for r ∈ {0, 2, . . . , 2n}, and {0} otherwise.

Now, we compute

N ′m =
∑

(−1)rTr(Fm|Hr(Pn(Fq);Q`)) ∼=
n∑
r=0

Tr(Fm|H2r(Pn(Fq);Q`))
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In order to do so, we must consider the corresponding generalized Frobenius mapping Fm, for

m ≥ 1, over this vector space. Equipped with this, we can describe the sum of the eigenvalues of

Fm acting on by closed subvarieties Z by codimension. First, we note that for any choice of Z ⊂ Pn

of codimension r, there exists a corresponding [z] ∈ H2r(Pn;Q`) such that [z] 6= 0. When r = 0,

then Fm acts as [1] on H0(Pn;Q`). Then for 0 < r < n, without loss of generality, let Z be the

subvariety determined by {x0 = x1 = . . . = xn−r = 0}. Then the pullback Fm∗Z consists of qmr

lines corresponding to the choices of qm
th

roots of unity, and so Fm acts on H2r(Pn;Q`) as [qmr].

With this established, when codimension r = n, then Fm acts on H2n(Pn;Q`) as [qmn]. We can then

sum accordingly to find that N ′m = 1+qm+ . . .+qnm = Nm. Thus, we find Nm = N ′m agree. Hence,

ζ(Pn(Fq), t) = exp(
∑
m≥1

Nm
tm

m
) (6.0.4)

= exp(
∑
m≥1

(

n∑
i=0

qim)
tm

m
) (6.0.5)

= exp(

n∑
i=0

∑
m≥1

qim
tm

m
) (6.0.6)

=

n∏
i=0

exp(
∑
m≥1

qim

m
tm) (6.0.7)

=

n∏
i=0

exp(− log(1− qit)) (6.0.8)

=

n∏
i=0

(1− qit)−1 (6.0.9)

=

2n∏
i=0

exp

∑
m≥1

(Tr(Fm∗|Hi(Pn(Fq);Q`))))
tm

m




(−1)m

(6.0.10)

=

2n∏
i=0

exp

∑
m≥1

(−1)m(Tr(Fm∗|Hi(Pn(Fq);Q`))))
tm

m


 (6.0.11)

(6.0.12)
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= exp

∑
m≥1

N ′m
tm

m

 (6.0.13)

= ζ(Pn(Fq), t) (6.0.14)

Thus,

ζ(Pn(Fq), t) =
1

(1− t)(1− qt) · · · (1− qnt)

since
∑
m≥1

(−1)m+1xm

m
= log(1 + x).

It is clear that this is a rational function as q is integral. Now to verify the functional equation:

ζ(Pn(Fq),
1

qnt
) =

1

(1− 1
qnt ) · (1−

1
qn−1t ) · . . . · (1−

1
t )

=
(qnt)(qn−1t) · · · t

(−1)n+1(1− qnt)(1− qn−1t) · · · (1− t)
= (−1)n+1qn(n+1)/2tn+1ζ(Pn(Fq), t)

In particular, with equation ( 6.0.4 ), we can infer the analogue of the Riemann hypothesis as well as

the Betti numbers, which come to us as the rank of the ordinary cohomology group for the respective

complex manifold. That is, for odd dimensions, the rank is 0, and for even dimensions, the rank 1.

Thus βi =

1 i ∈ {0, 2, . . . , 2n}

0 otherwise
. Thus we can conclude that the Euler characteristic χ = n + 1,

which we just verified indirectly.
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Chapter 7

Future Work

As mentioned in the Foreward, this paper is incomplete. Due to the expansive nature of this project,

and certain compromises that were made in order to begin laying the proverbial scaffolding for the

project, many technical details were omitted. In hindsight, a radically different approach ought to

have been taken, such that focus would have been given entirely to individual problems. However,

there is at least one advantage to having conducted this survey; the following is a list of specific

items that will need to be addressed in order to provide a complete proof within a formal proof

verification program, such as Coq , or in some language realizing homotopy type theory (HoTT ):

1. A general survey of the category of groups in HoTT ;

2. A general survey of the category rings in HoTT ;

3. A general survey of the category of fields in HoTT ;

4. A general survey of schemes and varieties with the tools of homotopy type theory, including a

proof of Theorem ;

5. A follow up paper including a verification of the proof of Bertini’s theorem;

6. A short paper on the Eilenberg-Steenrod axioms in homotopy type theory;

7. A short paper on the Künneth Formula and Poincaré duality, including a proof of the Universal

Coefficient theorem;
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8. A general survey of abelian sheaf cohomology within homotopy type theory;1

9. A short paper on the Chow ring;

10. A short survey of Gysin sequences;

11. A follow up paper to papers focusing on defining the type of Weil cohomology theories;

12. A paper focusing on Lefschetz pencils;

13. A survey focusing on Leray Spectral sequences.

14. A self-contained, and exhaustive paper presenting the proof of the Riemann Hypothesis, al-

though ideally this should be split into the following, far more manageable and comprehensive

papers:

• A paper verifying the geometric reductions;

• The construction of the desired filtration outlined in Steps 1-3 of section 5.3;

• A Proof of Lemma 54;

• A consolidation of these results.

This list is not exhaustive. In some cases, these individuals papers can be produced with little effort

from the excised appendices.

1While [17] provides a nice overview of two approaches to cohomology in homotopy type theory, the former
effectively using truncations, a nice paper performing some explicit calculations would be desirable.
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