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The goal of this paper is to collect and prove necessary and sufficient condi-
tions for a a specific class function S : OnÑ Sets to satisfy

Spαq |ù T

for various algebraic theories T. Namely, we consider the class function S defined
by the mapping α ÞÑ p

Ť

βPα

β2,Ăq, which sends an ordinal to a binary tree of

height α, and consider the necessary and sufficient conditions an ordinal must
satisfy to specify a given algebraic theory. Specifically, the algebraic theories
we will investigate will be over signatures with `, ¨, v derived from the surreal
numbers.

1 Initial Correction and some necessary ďs re-
sults

Remark. While it is quite embarrassing that the results below stem from my
simultaneously misstating and misattributing an interesting result of Conway,
an embarrasment compounded by the fact that some of the work I did recently for
Dave involved the characteristic p examples described below, nonetheless, these
results are novel and interesting in and of themselves. Moreover, the result
which was misattributed to Conway is a consequence of Chapter 6 in Gonshor,
where ε numbers are identified with real closed fields.

The initial misstatement was that I attributed to Conway a result that held
that subtrees of No of height the epsilon numbers were real closed fields. This
is simply not the case, as an immediate counter example would have the full
binary subtree of height ω0 “ ωp0q is a model of RCF, and ωp0q ! εp0q.

The actual ε "result" of Conway occurs in Chapter 6 of [2]. In this chapter,
Conway begins by showing how one can turn On into a field of characteris-
tic 2 by means of an inductive construction identifying the minimal excludent
/cite{ONAG, Onp}. This construction is based on Nim-arithmetic that Con-
way explores elsewhere in [2]. The ordinal results that Conway provides in this
chapter characterise when a given ordinal is a group, a ring, a field, etc.
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Specifically, mex tSu indicates the least ordinal not in a set S, with the mem-
bers of S being called excludents. This gives rise to

α` β “ mex
 

α1 ` β, α` β1
(

r´αs “ mex
 

r´α1s
(

αβ “ mex
 

α1β ` αβ1 ´ α1β1
(

β “ α´1 “ mex

#

0,
1` r´α1 ´ αsβ1

α1

+

β “
?
α “ mex

#

?
α1,

α1α˚ ` α

α1 ` α˚

+

with α1, α˚ indicating distinct ordinals less than α.
With square brackets used to indicate ordinal arithmetic operations distinct

from the field operations under consideration, ∆ to indicate an ordinal whose
arithmetic relation to earlier ordinals is being considered, and δ P ∆, Conway
proves the following:

Fact 1. 1. If ∆ is a not a group under addition, then ∆ “ α ` β, where
pα, βq is a any lexicographically earlier pair of numbers in ∆ whose sum
is not in ∆.

2. If ∆ is a group, then r∆αs ` β “ r∆α` βs for all α P On and β P ∆.

3. If ∆ is a group but not a ring, then ∆ “ αβ, where pα, βq is any lexico-
graphically earliest pair of numbers in ∆ whose product is not in ∆.

4. If ∆ is a ring, and Γ ď ∆ is an additive subgroup all of whose non-zero
elements have multiplicative inverses in ∆, then ∆γ “ r∆γs for all γ P Γ.

5. If ∆ is a ring, but not a field, then ∆ is the inverse of the earliest non-zero
α in ∆ which has no inverse in ∆.

6. If the assumptions in Fact 1.5 hold, then ∆nγn`∆n´1γn´1`¨ ¨ ¨`∆γ1`δ “
r∆pΓn´1γn ` ¨ ¨ ¨ ` γ1q ` δs for all n P ω and all γ0, γ1, . . . , γn P Γ, and
δ P ∆.

7. If ∆ is a field but not algebraically closed, then ∆ is a root of the lexi-
cographically earliest polynomial having no root in ∆ (by examining high
degree coefficients first).

8. Same assumptions as Fact 1.7, for all n ă N and δ0, . . . , δn P ∆, then
∆nδn ` ¨ ¨ ¨ ` δ0 “ r∆

nδn ` ¨ ¨ ¨ ` δ0s.

9. If ∆ is an algebraically closed field, then ∆ is transcendental oer ∆, adn we
have $∆nδn` . . .`δ0 “ r∆

nδn` . . .`δ0s for all n P ω and δ0, . . . , δn P ∆.
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10. If ∆ is a group, then r∆2s is also a group. Moreover, the ordinals that
are groups are precisely the 2-powers r2αs, with each ordinal decomposing
uniquely into a finite sum of descending 2-powers, with the sums agreeing
in both senses considered (as ordinals, and as algebraic objects).

11. The finite fields are Fermat 2-powers.

12. The first few infinite fields are

ω, rω3s, rω9s, . . . ,

then
rωωs, rωω5s, rωω25s, . . . ,

and in general for p the (k+1)st odd prime, with αp the least number in
rωω

k

s with no pth root in rωω
k

s, the sequence

αp, rω
ωk s, rωω

kps, rωω
kp2s, . . .

describes the next set of fields.

What Conway suggested, and diMuro showed, is that εp0q as the ordinal of
the first cubic extension 3

?
t. Moreover, diMuro generalizes Conway’s minimal

excludent construction to general characteristic p cases. In both cases, the prob-
lem of identifying the next transcendental is raised and phrased as follows:

Question 1. How does one express in terms of ordinal arithmetic the least
ordinal greater than ωω

ω

which is transcendental over previous ordinals. In
particular, decide how this relates in realtion to the ordinal ω0 and the least α

These arguments will be revisited in the subsection on fields below. Specif-
ically, many of the results to come can be traced back to work done by Philip
Ehrlich [3] and his works on /Number Systems with Simplicity Hierarchies: A
Generalization of Conway’s Theory of Surreal Numbers/. Specifically, Ehrlich
shows that in addition to be the unique homogeneous universal ordered
field, the surreal numbers structure as a lexicographically ordered binary tree
have an algebraico-tree-theoretic structure such that the surreals are teh unique
complete s-hierarchical (ordered) group, field, vector space, and general s-hieararchical
ordered structure, and that there is one and only one s-hieararchical map from
an s-hierarchical ordered structure into No.

These maps are specifically identified as a initial subtrees T of No, which
will properly be subtrees of No. These maps in turn allow one to characterize
No up to isomorphism as the unique complete, nonextensible and universal s-
hierarchical group/field/vectors space. Ehrlich also considers the spectrum of
initial substructures of No, which includes every real-closed ordered field being
isomorphic to an initial subfield of No.

Definition. A ordered binary tree (given by L “ tT,ă,ăsu) is { lexicographi-
cally ordered} whenever for all x, y P T , where x ă y, x is incomparable with y
if and only if there is z ăs x, y such that x ă z ă y.

3



Whenever T is an ordered tree, then x ăs y is read as "x is simpler than
y". An element x of a non-empty subclass I of T is the simplest member if
for all y P Iztxu, x ăs y. Following [3], s-hierarchies arise as follows:

1. xT,`,ă,ăs, 0y is an s-hiearchical order group if i. xT,`,ă, 0y is an
ordered abelian group; ii. xT,`,ăsy is a lexicographically ordered binary
tree; iii. for all x, y P A, x` y “ txL ` y, x` yLu | txR ` y, x` yRu

2. xT,`, ¨,ă,ăs, 0, 1y is an s-hierarchical ordered field if: i. xT,`, ¨,ă
, 0, 1y is an ordered field; ii. xT,`,ă,ăs, 0y is an s-hierarchical ordered
group; iii. for all x, y P T ,

xy “ txLy´xyR´xLyL, xRy`xyR´xRyRu | txLy`xyR´xLyR, xRy`xyL´xRyLu

3. xT,`, ¨,ă,ăsy is an *s-hierarchical ordered vector space over K if: i. K
is an s-hierarchical ordered field; ii. T is an ordered K-vector space in
which for all x P K and y P T , xy is defined by the same inductive game
definition above.

A subgroup (subfield, subspace) A of an s-hierarchical group (s-hierarchical
ordered field, s-hierarchical ordered vector space) T is initial if A is an initial
subtree of T . We say A is a maximal initial subtree of T if for all other initial
subtrees S of T such that htpSq ď htpAq, then S Ă T . Specifically, we identify
all maximal initial binary trees with the subsets tx P No | lhpxq ď αu, where
α P On.

A binary tree T is full if every element has exactly two successors, and every
chain of infinite limit length ă On, has an immediate successor.

A lexicographically ordered binary tree T is complete if for all subsets L,R Ă
T such that L ă R, there is a y P T such that y “ tLu | tRu.

A mapping f : A Ñ B between two lexicographically ordered binary trees A
and B is s-hierarchical if for all x P A,

fpxq :“ tfpxLqu | tfpxRqu

An s-hierarchical group (field, vector space) U is universal if there is an
s-hierarhical embedding f : A Ñ U for each s-hierarhical group (resp. field,
vector space) A.

An s-hiearchical ordered group (s-hierarchical ordered field; s-hierarchical or-
dered vector space) M ismaximal or non-extensible if there is no s-hierarchical
structure that properly contains M as an initial substructure.

Remark. The last two definitions are made in part to correct Conway’s mis-
leading description of No as an "universally embedding" structure. Properly
understood, the surreal numbers are universally extending structure in the sense
of Ehrlich, et al. This is to correct an error of Dales and Woodin who mistak-
enly asserted in the literature that the surreal numbers are up to isomorphism
the universe universal ordred field.

Ehrlich [3] correct these assertion and provides the following result of inter-
est:
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1. Every divisible ordered abelian group is isomorphic to an initial subgroup
of No;

2. Every real-closed ordered field is isomorphic to an initial subfield of No.

3. every non-trivial s-hierarchical ordered group (field) A contains a cofinal,
canonical subsemigroup (subsemiring) OnpAq, the ordinal part of A, con-
tained in a discrete, canonical subgroup OzpAq, the omnific integer part
of A, in each for each x P A, there is a z P OzpAq, and e the least positive
element of OzpAq such that z ď x ă z ` e,

The following two theorems are important for characterizing the initial sub-
treeswhich we are interested in identifying: [3]

Theorem 1. Given an ordered tree A “ xA,ă,ăsy, the following are equivalent:

1. xA,ă,ăsy is a lexicographically ordered binary tree;

2. xA,ă,ăsy is uniquely isomorphic to an initial subtree of xB,ălex,ăBy,
with B “

Ť

βPOn

βt´,`u the canonical binary tree;

3. every nonempty convex subclass of A contains a simplest memeber wrt ăs,
and for all x, y P A, if x ăs y then xL ă y ă xR.

Theorem 2. For a lexicographically ordered binary tree xT,ă,ăsy, the following
are equivalent:

1. xT,ăsy is a full binary tree;

2. xT,ă,ăsy is complete;

3. the intersection of every nested sequence Iα of non-empty convex subclasses
of xT,ă,ăsy is nonempty (and thus would have a simplest member by the
result above).

We also note that ωpxq are the simplest positive elements of their respective
Archimedean class, with proofs of this available in [1, 3, 4].

2 Sign Sequence Primer
The following results are a summary of Gonshor Chapter 5 [4], as well as some
new results of Kuhlmann and Matusinski [6]. While each author has their own
preferred notation for concatenation and representing the sign sequence, we have
opted to use notation keeping in line with work found in Kunen [7], Jech [5],
and other more set-theoretically inclined authors [8].

Definition. Following Gonshor, a surreal number a can be regarded as a func-
tion from some ordinal α to a set of cardinality 2. These functions are so that
for two surreal numbers a, b, we may concatenate them to form a third number,
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a " b. The concatenation operation respects standard results on ordinal length,
i.e.

lhpa " bq “ lhpaq ‘ lhpbq

as can be verified by an induction argument on the lengths of numbers.

Whenever necessary, we will use ‘ to indicate ordinal addition, and b to
indicate ordinal multiplication. Otherwise, from context αβ and other string
concatenations of Greek letters will indicate ordinal multiplication.

Notation. We will denote by (a) the sign sequence of a, and write out the sign
sequence as a sequence of ordered pairs pxαµ, βµy : µ P λq for some λ P On.
Note, if αµ “ 0, then µ “ 0 or µ P LimpOnq, and if βµ “ 0, then µ is the
maximum element in λ, i.e. the sequence terminates at µ.

Definition. Given a P No, let a` denote the total number of ` appearing in
the sign sequence of a, so

a` “
ÿ

µ

αµ

as an ordinal sum.
Given a P Noą0, define a5 to be the surreal number attained by omitting the

first ` sign.
Given a P Noă0, define a7 to be the surreal number attained by omitting the

first ´ sign.
Given a surreal in normal form a “

ř

iPλ

ωairi, the reduced sequence paoi |i P

λq is attained by omitting "-" in the following sign sequences:

• given γ P On, if aipγq “ ´ and there exists j ă i such that $aj(δ)=ai(δ)
for all δ ď γ, then omit the δth "-";

• if i is a successor, ai´1 " ´ Ă ai and if ri´1 is not a dyadic rational,
then omit the - after ai´1 in ai.

The following theorems provide a concise overview of the sign sequence
lemma, as well as the sign sequence of generalized epsilon numbers.

Theorem 3. Given a “ pxαi, βiyqiPλ, for any µ P λ, we set

γµ :“
ÿ

λďµ

αλ

Then ωa has the sign sequence

xωγ0 , ωγ0`1βy " pxωγi , ωγ1`1βiyq0ăiăµ

Theorem 4. Given a positive real r with sign sequence pxρi, σiyq, the sign se-
quence of ωar is

pωaq " xωa
`

ρ50, ω
a`

σ0y " pxωa
`

ρi, ω
a`

σiyq

with ωa
`

ρ and ωa
`

σ being the standard ordinal multiplication (with absorption).
If r is a negative real, we reverse the signs.
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Theorem 5. Given a “
ř

iăλ

ωairi,

paq “"iăλ pω
aoi riq

The following theorem is a combination of theorems 9.5 and 9.6 in [4]

Theorem 6. 1. a “ pxαi, βiyq is an epsilon number if and only if α0 ‰ 0,
all αµ ‰ 0 are ordinary epsilon numbers such that αµ ą lubtαλ | λ ă µu,
and βµ is a multiple of ωαµω for all αµ ‰ 0, and a multiple of ωγµω where
δµ “

ř

λăµ

αµ for αµ “ 0.

2. Let γµ “
ř

λďµ

αλ. Then the µth block of + in εpaq consists of eγµ +’s and

the µth block of -’s will consist of pεγµqωβµ -’s.

3 Additional Sign sequence results
Finally, the following results from Chapter 6 of [4] are vital for proving the results
we need on binary trees with‘,b indicating ordinal addition and multiplication,
and |x| indicating the cardinality of x. Supposing that lhpaq ď lhpbq ď lhpcq:

Fact 2. 1. lhpa` bq ď lhpaq ‘ lhpbq;

2. lhpabq ď 3lhpaq‘lhpbq;

3. |lhpa´1q| ď ℵ0|lhpaq|;

4. For a P NozD, then |lhpωpaqq| “ |lhpaq|;

5. for any non-zero real r and a, |lhpωpaqq ¨ r| “ |lhpωpaqq|;

6. If ωpbqr is a term in the normal from of a, then lhpωpbqq ď lhpaq;

7. For a “
ř

αPβ

ωpaαqrα, then |β| ď |lubαPβrlhpaαqωs|. (This result refers to

the least upper bound of ordinals on the right hand side, and cardinalities
on the left hand side).

8. For a “
ř

αPβ

ωpaαqrα, then |lhpaq| ď |lubαPβlhpaαq, ω|;

9. For a “
ř

αPβ

ωpaαqrα and lubαPβp|β|, |lhpaαq|,ℵ0q ď κ, then |lhpaq| ď κ.

10. The set of surreals with lengths less than a fixed ε number form a subring
of surreal numbers;

11. For α1, . . . , αn are arbitrary surreal numbers and r1, . . . , rn, are rational,
then |lhp

ř

riαiq| ď |max lhpαiq|ℵ0.
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12. An ordinal upperbound for the cardinality of κ will be the least ε number
larger than α.

13. The subset of surreal numbers tx | |lhpaq| ď κu for any fixed infinite
cardinal κ will form a real closed field. Furthermore, since all operations
will depend on finitely many elements of the condition lhpaq ď d, we may
strengthen this to lhpaq ă d.

We will explore Fact 2.12 in greater detail below.

4 Primes
A well-known result of Ernst Jacobsthal proves that the ordinals have a pseudo-
unique factorization theorem. The following definitions capture the primes in
pOn,‘,bq:

Definition. An ordinal α is prime if one of the following holds: i. α is a finite
prime number; ii. α is a delta number, i.e. α “ ωω

β

for some β P On; iii. α is
a successor to a γ number, that is α “ ωβ ` 1 for any β P Oną0.

Due to absorption, factorization of ordinals into primes is not unique without
further conditions being applied:

Proposition 1. An ordinal is uniquely factored into primes above provided the
factorization places: i. every δ prime occurs begore every γ successor prime ii.
the primes are listed in descending order for every pair of limit or finite primes
(i.e if α has two delta primes α1, α2 with α1 ě α2, then α “ α1α2ρ, where ρ is
the remainder of α).

Remark. We can read off the prime factorization above by using the Cantor
normal form as follows:

1. Write the ordinal α “ βγ where β is the smallest power of ω in the Cantor
normal form and β is a successor ordinal;

2. If β “ ωλ, then expressing λ in its Cantor Normal Form gives an expan-
sion of β as a product of its δ primes

3. For γ is a successor ordinal, if γ has a Cantor normal form γ “ ωµ0n0 `
ωµ1n1 ` ξ, where ξ P ωµ1 , γ can further be factored into a product

γ “ pωµ1n1 ` ξ1qpω
µ0´µ1 ` 1qn0

as a produt of smaller ordinals.

Example 1. Let’s suppose α “ ωω
235 ` ωω711 ` ω1317. We find the unique

factorization of α into primes as follows:
First, we note that β “ ω13 and

γ “ ωω
23´135` ωω7´1311` 17.

Since 13 is already a prime, we do not proceed to factor β any further. We
proceed to factor γ as follows
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5 Ordinal functions
Throughout this section, we let S : On Ñ Sets be the function sending α to
the full binary tree of height α. In other words, each branch of Spαq is of a
length in α. We will make frequent use of the following lemma

Lemma 1. ăs,ă induce ordering on the archimedean classes of No

Proof. We note that the simplest element in each archimedean class in No is an
element of the form ωpyq, where y P No. We can then induce the desired partial
or linear ordering with respect to simplicity or the lexicographical ordering of
No.

Moreover, throughout this section, with S defined as above, all algebraic
operations will be those defined for No. Since No and the algebraic operations
are inductively defined, they will be defined inductively for all elements at a
level less than the height of the binary tree.

5.1 Spαq |ù Ab
Theorem 7. pSpαq,`Noq |ù Ab if and only if α “ ωpβq for some β P On.

Proof. In the forward direction, suppose that α P On is an ordinal such that
Spαq is an abelian group.

Towards a contradiction, suppose that α ‰ ωpβq for any β P On. Then α
has Cantor normal form

ř

iPI

ωαini where indexing set I is either of cardinality

greater than 1, or n0 ą 1, and pαiq are a descending sequence of ordinals. Since
αi ą αi`1, we find that ωα0n0 must be an element in Spαq. But then, so will
ωα0n02. Contradiction.

Conversely, suppose that α “ ωpβq. We check that Spαq endowed with the
addition operation defined for the surreal numbers will be closed under addition.
For any a, b P Spαq, since lhpaq, lhpbq P ωpβq, we find that lhpaq ` lhpbq ě
lhpa ` bq. Let γ “ maxtlhpaq, lhpbqu. Since γ P ωβ , it follows that γ2 P ωβ ,
whence a`b P Spαq. The abelian group axioms are satisfied by the construction
of +, with associativity and commutativity exhaustively studied in [?]Gonshor,
ONAG}. The existence of inverses also follows as the inverse of any surreal
number is derived by changing the signs (and so the additive inverse of a surreal
number of a length γ will be of length γ).

We note that when β “ 0, that the group being described consists solely of
the zero element, and so the theory will vacuously be satisfied.

Remark. As a reminder, the ordering on the Archimedean classes is identical
to the lexicographical ordering on the surreals, making use of the fact that the
simplest element in each archimedean class is the respective γ number of that
class. Each class is closed under addition as a dense linearly ordered abelian
group.
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Claim: When we cut No off at a complete binary tree of height γ “ ωα, we
get a Z module that is a subspace of the R vector space with basis tω˘β | β P αu.
All non-trivial real vector spaces are odd-dimensional, but the Z submodule has
restrictions on the type of coefficient that it can be multiplied against. E.g. we
have something like a subspace of Dω1 ‘ R ‘ Dω´1 when working at ω2. This
would seem to follow from D being the abelian group we’re working with at height
ω. For ω3 for instance, we should have ω2`ω`1 as an element, as well as ω´1

and ω´2. Thus we should hav ω2 ` ω ` 1 ` ω´1 ` ω´2 as an element, and in
general Z modules of this element, along with D modules, and at the very least
R modules for all but the outer elements, provided I can show that. . .

Example 2. We may want to present the normal forms for members of Spγq.
When γ “ ω, each normal form is exactly some dyadic rational number d.

When γ “ ω2, we have all real numbers, as well as all a normal form of

ωr0 ` r1 ` ω
´1r2

with the following restrictions on vectors of real numbers xr0, r1, r2y:
if r0 “ 0, then r1 P R.
if r0 P D, then

Before continuing, we will need the following lemma

Lemma 2. Let λ P On. Then a P Spωλq if and only if ωpaq P Spωω
λ

q .

Proof. In the forward direction, suppose that a is a surreal number of length
γ P ωλ with sign sequence pxαµ, βµy | µ P ξq, with γ, ξ, αµ, βµ P ωλ for all µ P ξ.

We know that
ÿ

µPξ

pαµ ` βµq “ γ

and that
pωpaqq “ pxωγµ , ωγµ`1βµy | µ P ξq

so the length of ωpaq will be
ÿ

µPξ

pωγµ ` ωγµ`1βµq.

If ξ “ δ ` 1, then by left absorption

lhpωpaqq “ ωa
`

` ωa
`
`1βδ.

If ξ is a limit ordinal, then we can strictly bound lhpaq above by ωa
`
`1ωλ (since

all βµ P ωλ). We can further refine this by noting that a` P ωλ, and so we
are further bounded above by ωω

λ

. Thus we have that a P Spωλq implies that
ωpaq P Spωω

λ

q.
Conversely, suppose that ωpaq P Spωω

λ

q. Towards a contradiction, further
suppose that a R Spωλq. Without loss of generality, let’s suppose that lhpaq “
ωλ.
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5.2 Spαq |ù CRing
We will need the following lemma before studying multiplication:

Lemma 3. 1. λ, ξ P α;

2. for all µ P λ, we have αµ, βµ P α;

3. for all i P ξ, yi P Spαq.

Proof. First note that
ř

µPλ

pαµ ` βµq ě λ, since at most αµ “ 0 for all µ P

Limpωω
β

q Y t0u, and the sequence terminates whenever βµ “ 0. If λ ě ωω
β

,
then we could not have a sign sequence of length less than ωω

β

.
If ξ ě ωω

β

, then since the length of each summand in the normal form of a
is at least size 1, we also easily derive a contradiction.

For the second claim, suppose that for µ, we had that αµ ` βµ ě α. Then
immediately the length of the sequence is at least α. Contradiction.

For the third claim, if any yi R Spαq, then wlog, let lhpyiq “ α. Since ωpyiq
is given by the sign sequence

pxωγµ , ωγµ`1βµy | µ P λq

We claim that if yi is of length at least α, then ωpyiq will be at least length
ωpαq.

This claim be verified by an induction argument. If y is length zero, then
ωp0q “ 1. Suppose this holds for all y of length α. Then for any length α ` 1,
since the function is extended either by a ’+’ or ’-’ symbol, we let y be a surreal
number with length α and γ many alternating pairs:

1. If γ “ λ` 1, and βλ “ 0: i. for z “ y " `, the ordinal z` “ y` ` 1, and
so ωz

`

“ ωy
`

ω Q ωy
`

` 1, from which we conclude that ωpzq ě α` 1. ii.
for z “ y " ´, we have z` “ y`, and βλ “ 1, so

lhpωpzqq “ lhpωpaqq ` ωy
`

ě α` 1.

2. If γ “ λ` 1, and βλ ‰ 0: i. and ii. are similar to the arguments above.

3. If γ P LimpOnq, then for either symbol we add, we either increase z`

by 1 or contribute another ωy
`

many "-" signs. Either way, we have
ωpzq ě α` 1.

Finally, suppose this is true for all α P λ P LimpOnq. Then for y such that
lhpyq “ λ, we must check that lhpωpyqq ě λ. If y “ λ or y “ ´λ, then this
will be immediate. Otherwise, let y have γ ą 1 many pairs. If γ is not a limit
ordinal, since the length of y “ λ, by absorption either the final pair is xλ, 0y or
xδ, λy where δ P λ. Either way we immediately find that ωpyq ě λ.

At last, if γ is a limit ordinal, then we find that either γ “ λ and the
αµ, βµ P λ, or either

Ť

µPγ
αµ “ λ or

Ť

µPγ
betaµ “ λ. In the last two cases, the

11



inequality follows from the arguments above. If γ “ λ, then ωpyq will have λ
many pairs, and thus will be at least size λ.

Thus we find that ωpyiq P Spαq.

Further, we prove the following fact:

Theorem 8. For any surreal number with normal form
ř

iPξ

ωyiri, the sign se-

quence is given by
"iPξ pω

yoi riq.

Let λi denote the length of each summand, and λoi denote the length of the each
reduced sign sequence. Then the length of a “

ř

iPξ

λoi ď
ř

iPξ

λi

Proof. This can be checked by induction. The only thing which needs to be
verified is that λoi ď λi for any given i. This is immediate, since omitting a ’-’
sign in the sign sequence means that the second argument of some pair drops
from βµ to some β1µ P βµ, from which we will find

ωγµ`1β1µ P ω
γµ`1βµ,

which entails that
ÿ

iďµ

αi ` β
1
i ď

ÿ

iďµ

αi ` βi.

Thus, the sum of the lengths of the sequence
ÿ

λoi ď
ÿ

λi.

We note that even if signs are omitted, equality may hold when summing
sequences of a limit ordinal length.

Finally, we are able to prove the following:

Theorem 9. pSpαq,`No, ¨Noq |ù CRing if and only if α “ ωpωpβqq, for some
β P On.

Proof. In the forward direction, suppose that Spαq is a non-trivial characteristic
zero commutative ring. Towards a contradiction, suppose that α “

ř

i“I

ωαini,

and let x “ ωα0 . It follows x P Spαq, and by hypothesis, xn P Spαq for all n P ω.
But then ωα02 P Spαq, which is impossible since ωα02 Q

ř

iPI

ωαini.

In the converse direction, with `, ¨ given as the standard surreal number
constructions, if α “ ωpωpβqq for some β, let a, b P Spαq. It suffices to check
that lhpabq P ωpωpβqq.

Let a “
ř

iPλ1

ωairi and b “
ř

jPλ2

ωbjsj . By Theorem ??? in [4],

ab “
ÿ

pi,jqPλ1ˆλ2

ωpai`bjqprisjq

12



From Lemma 1 we have that ai, bj P Spαq and from Theorem 7 that ai ` bj P
Spαq. Furthermore, we have that all real numbers are of length ď ω, and so all
risj P Spω

ωβq for all β P On. Let λ “ o.t.pλ1 ˆ λ2q. We check that λ P ωω
β

.
Finally, we note that at most lhpai ` bjq “ maxtlhpaiq ` lhpbjq, lhpbjq `

lhpaiqu P ω
ωβ . This follows from lhpaiq, lhpbjq P ω

ωβ with Cantor forms

k1
ÿ

i“0

ωδini

k2
ÿ

j“0

ωγjmj

that δi, γj P ωβ for i P rk1s and j P rk2s. Without loss of generality, further
suppose that δi ą γj for all i, j. Then we can relabel, δi, γj as ρl with l P rk1`k2s
with ρi “ δi and ρl“k1`j “ δl“k1`j , and ni,mj appropriately relabeled. Then

lhpai ` bjq “
k1`k2
ÿ

l“0

ωω
ρl
nl ă ωω

ρ0
pn0 ` 1q P ωω

β

.

Thus
We now appeal to Theorem 8, and Lemma 1.
Thus Spαq will be closed under multiplication.

What is remarkable here is that ωpωpβqq are all prime ordinals. However,
ωα`1 for all α P On are also prime, but do not correspond to algebraic objects.
So not all primes classify algebraic theories of interest.

5.3 TODO Spαq |ù Divisible Abelian Group

5.4 TODO Spαq |ù p¨ Divisible Groupq

5.5 TODO Spαq |ù RCF

5.6 TODO Spαq |ù RCVF
% * TODO Proof of Concept The proofs of concepts below are primarily for
binary trees T of a given ordinal height α, such that T are full up α, and for
proper subclasses of ordinals themselves.

In particular, htpT q “ α, with T full up to α, then T –
š

βPα`1

Ppβq – Nopαq.

So the first full subtree that is an (ordered) additive group, i.e. closed under
addition, will be of height ω, but each branch is of finite length. Precisely, this
group is the dyadic rationals, which are also a ring. However, Q, and R both
are subtrees of height ω` 1, a binary tree of height ω` 1 is neither a group nor
a field, since ω ` ω will be a branchof length ω2.

13



6 Maximal subtrees
6.0.1 Groups

Theorem 10. A maximal initial subtree T of No is a group if and only if T is
height ωpαq, for some α P On.

Proof. In the forward direction, suppose that T is a maximal initial subtree of
No is a group. Towards a contradiction, suppose further that T is of height
γ R ωpOnq. In particular, γ has a Cantor normal form

ř

iPI

ωαini, where indexing

set I is such that |I| ą 1 or n0 ą 1. Since αi ą αi`1, ωα0n0 will be an element in
T . Moreover, since T is a group, ωα0n0m will be an element in T for all m P ω.
But since ωα0n0 ą

ř

iPIzt0u

ωαini, we have ωα0n02 ą
ř

iPI

ωαini. Contradiction.

Moreover, the same argument works when |I| “ 1 and n0 ą 1.
In the converse direction, suppose that T is a maximal initial subtree of

height λ “ ωpαq for some α P On. Since ωpαq is the simplest element in its
respective Archimedean class, and every x, y P T is of length λ, by Fact 2.1, and
lhpxq` lhpyq ă λ, T is closed under addition. Since T is maximal, if x P T , then
´x P T by reversing all the signs in the sign sequence of x. The associativity
and commutativity of addition has been studied exhaustively in [1, 3, 4]. Thus
T is an (abelian) group.

We can use the above theorem to also classify which maximal initial subtrees
are ordered abelian groups given the work of [3].

We notice that D is not a divisible ordered abelian group, and so the first
maximal initial subtree that is a non-trivial divisible ordered abelian group must
be at some ordinal ωpαq for α ą 1.

In fact, we can show that it must be εp0q by considering the lengths of
ω

n
.

For all n, and m ă 2n such that pm, 2nq “ 1, we have that
ωm

2n
is a branch of

length ωb pn` 1q. So in particular, ωD consists of branches of length ωă2. We
now check find that ωQ consists of branches up to length ω2 “ ωp2q, after which
we repeat this procedure to find branchess of length ωp3q, and so on, finding
branches of ωpnq for all n P ω, whence the maximal initial binary tree of height
ωω will be the first non-trivial divisible abelian group.

Claim. ωQ consists of branches of up to length ω2.

Proof. Suppose without lost of generality that p
q has sign expansion xαi, βi | i P

ωy, with αi, βi P Z`. Then since ω “ xω,Hy, the sign sequence of ω pq will be

xω ‘ ωα50, ωβ0y " pxωαi, ωβiyq0PiPω

Since p
q is rational, the sign sequence of pq eventually repeats itself, and so there

will be a maximal N ě αi, βi for all i P ω. Thus lhpω pq q ď
ř

ω
ω ˚M “ ω2.

14



Claim. The maximal initial tree of height ωω is the first non-trivial divisible
ordered abelian group.

Proof. It is immediate that ωω will be closed under addition. We check that
for any a P tx P No | lhpxq P ωωu, there is b P tx P No | lhpxq P ωωu such that
a “ b ¨ n, i.e. a 1

n P tx P No | lhpxq P ωωu.
Towards that end, we use Theorem 5 from Section 1 to relate the normal

form of a “
ř

iăλ

ωairi to its sign sequence "iăλ pω
aoi riq. In effect, what we must

show is that "iăλ pω
aoi ri

n q is of length < ωω for all positive n.
In particular, each if a is of less than length ωω, then it is of length less than

ωN for some N P N, and moreover, each string pωa
o
i riq is of length less than

ωN , so pωa
o
i ri
n q will be of length less than ωN`1, and thus a

n will be of length
less than ωN`2, whence a

n will be in tx P No | lhpxq P ωωu.

This leads to the next theorem

Theorem 11. Let δpxq :“ t0, ωpδpxLq ¨ nqu | t
δpxRq

2n
u. Then a maximal binary

tree T is a divisible ordered abelian group if and only if T is of height α for some
α P δ”On

Proof. Not sure if this is correct. Working on it.

6.0.2 TODO More Structures

6.1 TODO Ordinals as algebraic objects
6.1.1 TODO Characteristic p

6.1.2 TODO p-adics
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