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The goal of this paper is to collect and prove necessary and sufficient condi-
tions for a a specific class function S : ON — SETS to satisfy

S(a) =T

for various algebraic theories T. Namely, we consider the class function S defined
by the mapping o — (|J #2,=), which sends an ordinal to a binary tree of

Bea
height «, and consider the necessary and sufficient conditions an ordinal must

satisfy to specify a given algebraic theory. Specifically, the algebraic theories
we will investigate will be over signatures with +, -, v derived from the surreal
numbers.

1 Initial Correction and some necessary <, re-
sults

Remark. While it is quite embarrassing that the results below stem from my
simultaneously misstating and misattributing an interesting result of Conway,
an embarrasment compounded by the fact that some of the work I did recently for
Dave involved the characteristic p examples described below, nonetheless, these
results are novel and interesting in and of themselves. Moreover, the result
which was misattributed to Conway is a consequence of Chapter 6 in Gonshor,
where € numbers are identified with real closed fields.

The initial misstatement was that I attributed to Conway a result that held
that subtrees of NO of height the epsilon numbers were real closed fields. This
1s simply not the case, as an immediate counter example would have the full
binary subtree of height wy = w(0) is a model of RCF, and w(0) <« €(0).

The actual € "result” of Conway occurs in Chapter 6 of [2]. In this chapter,
Conway begins by showing how one can turn ON into a field of characteris-
tic 2 by means of an inductive construction identifying the minimal excludent
Jcite{ ONAG, Onp}. This construction is based on Nim-arithmetic that Con-
way explores elsewhere in [2]. The ordinal results that Conway provides in this
chapter characterise when a given ordinal is a group, a ring, a field, etc.



Specifically, mex{S} indicates the least ordinal not in a set S, with the mem-
bers of S being called excludents. This gives rise to

a+ B =mex{a +B,a+ 8}

[—a] = mez{[—a']}
aff = mex{d/B +af —d'B'}
1+ [ — a]ﬁ’}

al

B=at= me:c{O,

oa* +«
b =+a= mex{\/a’,

o + a*

with o, a* indicating distinct ordinals less than a.

With square brackets used to indicate ordinal arithmetic operations distinct
from the field operations under consideration, A to indicate an ordinal whose
arithmetic relation to earlier ordinals is being considered, and 6 € A, Conway
proves the following:

Fact 1. 1. If A is a not a group under addition, then A = o + 3, where
(o, B) is a any lexicographically earlier pair of numbers in A whose sum
is not in A.

2. If A is a group, then [Aa] + 8 = [Aa + ] for all « € ON and 5 € A.

3. If A is a group but not a ring, then A = af3, where (o, 8) is any lexico-
graphically earliest pair of numbers in A whose product is not in A.

4. If A is a ring, and T' < A is an additive subgroup all of whose non-zero
elements have multiplicative inverses in A, then Ay = [A~] for all v e T.

5. If A is a ring, but not a field, then A is the inverse of the earliest non-zero
a in A which has no inverse in A.

6. If the assumptions in Fact 1.5 hold, then A"y, +A" 1y, 1+ -+Ay +6 =
[AT Ly, + -+ 1) + 8] for all n € w and all v9,71,-.-,7 € [, and
deA.

7. If A is a field but not algebraically closed, then A is a root of the lexi-
cographically earliest polynomial having no root in A (by examining high
degree coefficients first).

8. Same assumptions as Fact 1.7, for all n < N and dq,...,0, € A, then
A"y, + oo+ dp = [A™, + -+ + do].

9. If A is an algebraically closed field, then A is transcendental oer A, adn we
have $AnS, + ...+ 8y = [A"0, + ...+ 0] for alln € w and by, ..., 6, € A.



10. If A is a group, then [A2] is also a group. Moreover, the ordinals that
are groups are precisely the 2-powers [2%], with each ordinal decomposing
uniquely into a finite sum of descending 2-powers, with the sums agreeing
in both senses considered (as ordinals, and as algebraic objects).

11. The finite fields are Fermat 2-powers.
12. The first few infinite fields are
w, [w’], [w], ...,

then
[w*], [w*], [w?), ...,

and in general for p the (k+1)st odd prime, with oy, the least number in

wk

[w¥" ] with no pth root in [w“’k], the sequence

g, [ ], [ P, [ 77,
describes the next set of fields.

What Conway suggested, and diMuro showed, is that €(0) as the ordinal of
the first cubic extension /t. Moreover, diMuro generalizes Conway’s minimal
excludent construction to general characteristic p cases. In both cases, the prob-
lem of identifying the next transcendental is raised and phrased as follows:

Question 1. How does one express in terms of ordinal arithmetic the least
ordinal greater than w*” which is transcendental over previous ordinals. In
particular, decide how this relates in realtion to the ordinal wg and the least o

These arguments will be revisited in the subsection on fields below. Specif-
ically, many of the results to come can be traced back to work done by Philip
Ehrlich [3] and his works on /Number Systems with Simplicity Hierarchies: A
Generalization of Conway’s Theory of Surreal Numbers/. Specifically, Ehrlich
shows that in addition to be the unique homogeneous universal ordered
field, the surreal numbers structure as a lexicographically ordered binary tree
have an algebraico-tree-theoretic structure such that the surreals are teh unique
complete s-hierarchical (ordered) group, field, vector space, and general s-hieararchical
ordered structure, and that there is one and only one s-hieararchical map from
an s-hierarchical ordered structure into NoO.

These maps are specifically identified as a initial subtrees T of NoO, which
will properly be subtrees of NO. These maps in turn allow one to characterize
NoO up to isomorphism as the unique complete, nonextensible and universal s-
hierarchical group/field/vectors space. Ehrlich also considers the spectrum of
initial substructures of NO, which includes every real-closed ordered field being
isomorphic to an initial subfield of NoO.

Definition. A ordered binary tree (given by L = {T,<,<s}) is { lexicographi-
cally ordered} whenever for all x,y € T, where x <y, x is incomparable with y
if and only if there is z <g x,y such that * < z < y.



Whenever T is an ordered tree, then x <s y is read as "z is simpler than
y". An element x of a non-empty subclass I of T is the simplest member if
for ally e I\{z}, v <5 y. Following [3], s-hierarchies arise as follows:

1. {T,+,<,<s,0) is an s-hiearchical order group if i. (T,+,<,0) is an
ordered abelian group; ii. (T,+,<s) is a lexicographically ordered binary
tree; iii. for allz,ye A, v +y = {zX +y,z + yL} | {z® + y, 2 + yF}

2. {T,+,-,<,<5,0,1) is an s-hierarchical ordered field if: i. {T,+,-, <
,0,1) is an ordered field; . {T,+,<,<s,0) is an s-hierarchical ordered
group; tii. for all x,ye T,

L, L R R

xy = {aly—ayl—2

3. (T, +,-,<,<sy is an *s-hierarchical ordered vector space over K if: i. K
is an s-hierarchical ordered field; 4. T is an ordered K-vector space in
which for all x € K and y € T, xy is defined by the same inductive game
definition above.

A subgroup (subfield, subspace) A of an s-hierarchical group (s-hierarchical
ordered field, s-hierarchical ordered vector space) T is initial if A is an initial
subtree of T. We say A is a mazximal initial subtree of T if for all other initial
subtrees S of T such that ht(S) < ht(A), then S < T. Specifically, we identify
all mazimal initial binary trees with the subsets {x € No | lh(x) < a}, where
a € ON.

A binary tree T is full if every element has exactly two successors, and every
chain of infinite limit length < ON, has an immediate successor.

A lexicographically ordered binary tree T is complete if for all subsets L, R <
T such that L < R, there is a y € T such that y = {L} | {R}.

A mapping f : A — B between two lexicographically ordered binary trees A
and B is s-hierarchical if for all x € A,

fl@) = {f(=")} [ {f(2™)}

An s-hierarchical group (field, vector space) U is universal if there is an
s-hierarhical embedding f : A — U for each s-hierarhical group (resp. field,
vector space) A.

An s-hiearchical ordered group (s-hierarchical ordered field; s-hierarchical or-
dered vector space) M is maximal or non-extensible if there is no s-hierarchical
structure that properly contains M as an initial substructure.

Remark. The last two definitions are made in part to correct Conway’s mis-
leading description of NO as an "universally embedding” structure. Properly
understood, the surreal numbers are universally extending structure in the sense
of Ehrlich, et al. This is to correct an error of Dales and Woodin who mistak-
enly asserted in the literature that the surreal numbers are up to isomorphism
the universe universal ordred field.

Ehrlich |3] correct these assertion and provides the following result of inter-
est:

y", aty+ay—ayY | {aPytay oty 2Ry +ayt -2yt



1.

2.
3.

FEvery divisible ordered abelian group is isomorphic to an initial subgroup
of No;

Every real-closed ordered field is isomorphic to an initial subfield of NO.

every non-trivial s-hierarchical ordered group (field) A contains a cofinal,
canonical subsemigroup (subsemiring) ON(A), the ordinal part of A, con-
tained in a discrete, canonical subgroup OZ(A), the omnific integer part
of A, in each for each x € A, there is a z € Oz(A), and e the least positive
element of OZ(A) such that z <z < z+e,

The following two theorems are important for characterizing the initial sub-
treeswhich we are interested in identifying: [3]

Theorem 1. Given an ordered tree A = (A, <, <y, the following are equivalent:

1.
2.

(A, <, <5y is a lexicographically ordered binary tree;

(A, <, <5y is uniquely isomorphic to an initial subtree of (B, <iez,<B),

with B = |J P{—,+} the canonical binary tree;
BeON

every nonempty convex subclass of A contains a simplest memeber wrt <,

and for all z,y € A, if x <,y then z¥ <y < &,

Theorem 2. For a lexzicographically ordered binary tree (T, <, <s), the following
are equivalent:

1.
2.
3.

(T, <5y is a full binary tree;
(T, <,<sy is complete;

the intersection of every nested sequence I, of non-empty convex subclasses
of (T, <, <sy is nonempty (and thus would have a simplest member by the
result above).

We also note that w(x) are the simplest positive elements of their respective
Archimedean class, with proofs of this available in [1,3l}4].

2 Sign Sequence Primer

The following results are a summary of Gonshor Chapter 5 [4], as well as some
new results of Kuhlmann and Matusinski [6]. While each author has their own
preferred notation for concatenation and representing the sign sequence, we have
opted to use notation keeping in line with work found in Kunen [7], Jech [5],
and other more set-theoretically inclined authors [g].

Definition. Following Gonshor, a surreal number a can be regarded as a func-
tion from some ordinal o to a set of cardinality 2. These functions are so that
for two surreal numbers a, b, we may concatenate them to form a third number,



a —~b. The concatenation operation respects standard results on ordinal length,
1.€.
lh(a ~ b) = lh(a) ®1h(b)

as can be verified by an induction argument on the lengths of numbers.

Whenever necessary, we will use @ to indicate ordinal addition, and ® to
indicate ordinal multiplication. Otherwise, from context a8 and other string
concatenations of Greek letters will indicate ordinal multiplication.

Notation. We will denote by (a) the sign sequence of a, and write out the sign
sequence as a sequence of ordered pairs ({a,Bu) : p € X) for some X\ € ON.
Note, if oy, = 0, then pn = 0 or p € Lim(ON), and if B, = 0, then p is the
mazximum element in A, i.e. the sequence terminates at p.

Definition. Given a € No, let a™ denote the total number of + appearing in
the sign sequence of a, so
at = Z oy
N

as an ordinal sum.
Given a € NO~, define a’ to be the surreal number attained by omitting the
first + sign.
Given a € NO, define a' to be the surreal number attained by omitting the
first — sign.
Given a surreal in normal form a = Y, w*r;, the reduced sequence (afli €
PEA

"1 4n the following sign sequences:

A) is attained by omitting

e given v € ON, if a;(y) = — and there exists j < i such that $a;(0)=a;(5)
for all 6 <, then omit the 5™ "-7;

e if i is a successor, a;_1 —~ — = a; and if ri_1 1s not a dyadic rational,
then omit the - after a;—1 in a;.

The following theorems provide a concise overview of the sign sequence
lemma, as well as the sign sequence of generalized epsilon numbers.

Theorem 3. Given a = ({eu, 5:))iex, for any pe X, we set
Yo = 2 Q)
Ap
Then w® has the sign sequence

<W’Yo , w70+1ﬁ> — (<w’” , w'yl+1ﬁz‘>)0<i<u

Theorem 4. Given a positive real v with sign sequence ({p;,0;)), the sign se-
quence of wr is

(W) —~ W™ P, w® ooy ~ (W ps,w™ )

with w‘ﬁp and w*' o being the standard ordinal multiplication (with absorption).
If r is a negative real, we reverse the signs.



Theorem 5. Given a = Y, w®r;,

<A

o

(@) =—~i<x (Wry)

The following theorem is a combination of theorems 9.5 and 9.6 in [4]

Theorem 6. 1. a = ({ay, Bi)) is an epsilon number if and only if ag # 0,

2.

3

all oy, # 0 are ordinary epsilon numbers such that oy, > lub{ay | A < p},
and B, is a multiple of w*** for all v, # 0, and a multiple of W+ where

du = > ay fora, =0.
A<p

Let v, = Y, ax. Then the p'™ block of + in e(a) consists of e, +’s and

A<p
the p'" block of -’s will consist of (64,)9Bu -’s.

Additional Sign sequence results

Finally, the following results from Chapter 6 of [4] are vital for proving the results
we need on binary trees with @, ® indicating ordinal addition and multiplication,
and |z| indicating the cardinality of x. Supposing that [h(a) < lh(b) < h(c):

Fact 2. 1. Ih(a +b) < lh(a) ®Ih(D);

2.

NS &

10.

11.

Ih(ab) < 3(@@WKE) .

Ih(a)] < Rolth(a)];

For a € NO\D, then |lh(w(a))| = |lh(a)|;

for any non-zero real v and a, |lh(w(a)) - r| = |lh(w(a))|;

If w(b)r is a term in the normal from of a, then Ih(w(b)) < lh(a);

Fora = Y, w(ag)ra, then |B] < |lubaes[lh(aq)w]|. (This result refers to

aEef
the least upper bound of ordinals on the right hand side, and cardinalities

on the left hand side).
For a = 3, w(aq)ra, then |lh(a)| < |lubseplh(aq),w|;

el

Fora =3 w(ay)re and lubses(|B], |Ih(aq)], Ro) < &, then |lh(a)| < k.
a€efB

The set of surreals with lengths less than a fized € number form a subring
of surreal numbers;

For aq,...,ay are arbitrary surreal numbers and r1,...,ry,, are rational,
then [Ih(D ;)| < | max Ih(a;)|No.



12. An ordinal upperbound for the cardinality of k will be the least € number
larger than a.

13. The subset of surreal numbers {x | |lh(a)| < &} for any fized infinite
cardinal k will form a real closed field. Furthermore, since all operations
will depend on finitely many elements of the condition lh(a) < d, we may
strengthen this to lh(a) < d.

We will explore Fact 2.12 in greater detail below.

4 Primes

A well-known result of Ernst Jacobsthal proves that the ordinals have a pseudo-
unique factorization theorem. The following definitions capture the primes in
(ON,®,®):

Definition. An ordinal o is prime if one of the following holds: i. « is a finite
prime number; 7. o is a delta number, i.e. a = we” for some 8 € ON; iii. « is
a successor to a y number, that is a = w® + 1 for any B € ON-y.

Due to absorption, factorization of ordinals into primes is not unique without
further conditions being applied:

Proposition 1. An ordinal is uniquely factored into primes above provided the
factorization places: i. every & prime occurs begore every 7y successor prime ii.
the primes are listed in descending order for every pair of limit or finite primes
(i.e if « has two delta primes aq, as with a; = as, then o = ajagp, where p is
the remainder of a).

Remark. We can read off the prime factorization above by using the Cantor
normal form as follows:

1. Write the ordinal o = B~ where 8 is the smallest power of w in the Cantor
normal form and B is a successor ordinal;

2. If B = w?*, then expressing X in its Cantor Normal Form gives an expan-
sion of B as a product of its & primes

3. For ~ is a successor ordinal, if v has a Cantor normal form v = w"ony +
whing + &, where & € WM, v can further be factored into a product

v = (Wng 4 &) (W 4 ng
as a produt of smaller ordinals.

Example 1. Let’s suppose o = w35 + w11 + w317, We find the unique
factorization of o into primes as follows:
First, we note that 8 = w3 and
v = w3185 4w 1317 4 17,

Since 13 is already a prime, we do not proceed to factor B any further. We
proceed to factor v as follows



5 Ordinal functions

Throughout this section, we let S : ON — SETS be the function sending « to
the full binary tree of height «. In other words, each branch of S(«) is of a
length in av. We will make frequent use of the following lemma

Lemma 1. <, < induce ordering on the archimedean classes of NO

Proof. We note that the simplest element in each archimedean class in NO is an
element of the form w(y), where y € No. We can then induce the desired partial
or linear ordering with respect to simplicity or the lexicographical ordering of
No. O

Moreover, throughout this section, with S defined as above, all algebraic
operations will be those defined for No. Since NO and the algebraic operations
are inductively defined, they will be defined inductively for all elements at a
level less than the height of the binary tree.

51 S(a) = AB
Theorem 7. (S(a), +no) = AB if and only if o = w(B) for some B € ON.

Proof. In the forward direction, suppose that o € ON is an ordinal such that
S(w) is an abelian group.

Towards a contradiction, suppose that o % w(8) for any 8 € ON. Then «

has Cantor normal form Y| w®n; where indexing set I is either of cardinality
iel

greater than 1, or ng > 1, and («;) are a descending sequence of ordinals. Since

a; > @41, we find that w*ng must be an element in S(a). But then, so will

wngy2. Contradiction.

Conversely, suppose that a = w(8). We check that S(«) endowed with the
addition operation defined for the surreal numbers will be closed under addition.
For any a,b € S(a), since lh(a),lh(b) € w(B), we find that lh(a) + lh(D) =
Ih(a + b). Let v = max{lh(a),lh(b)}. Since v € w?, it follows that 72 € w?,
whence a+b € S(«). The abelian group axioms are satisfied by the construction
of +, with associativity and commutativity exhaustively studied in [?]Gonshor,
ONAG}. The existence of inverses also follows as the inverse of any surreal
number is derived by changing the signs (and so the additive inverse of a surreal
number of a length v will be of length ). O

We note that when 8 = 0, that the group being described consists solely of
the zero element, and so the theory will vacuously be satisfied.

Remark. As a reminder, the ordering on the Archimedean classes is identical
to the lexicographical ordering on the surreals, making use of the fact that the
simplest element in each archimedean class is the respective v number of that
class. Fach class is closed under addition as a dense linearly ordered abelian

group.



Claim: When we cut NO off at a complete binary tree of height v = w®, we
get a Z module that is a subspace of the R vector space with basis {w? | B € a}.
All non-trivial real vector spaces are odd-dimensional, but the Z submodule has
restrictions on the type of coefficient that it can be multiplied against. E.g. we
have something like a subspace of Dw! @R @ Dw ™' when working at w?. This
would seem to follow from D being the abelian group we’re working with at height
w. For w? for instance, we should have w? +w+1 as an element, as well as w™!
and w=2. Thus we should hav w? + w + 1 +w™! +w™2 as an element, and in
general Z modules of this element, along with D modules, and at the very least

R modules for all but the outer elements, provided I can show that. . .

Example 2. We may want to present the normal forms for members of S(v).
When v = w, each normal form is exactly some dyadic rational number d.
When v = w?, we have all real numbers, as well as all a normal form of

wrg + 1y + UJ_1T2

with the following restrictions on vectors of real numbers {(ro,r1,T9):
ifro =0, thenr; e R.
if ro € D, then

Before continuing, we will need the following lemma
Lemma 2. Let A € ON. Then a € S(w?) if and only if w(a) € S(w‘*’A) .

Proof. In the forward direction, suppose that a is a surreal number of length
v € w* with sign sequence ((ov, By | p € &), with v, &, o, B, € w? for all p e €.

‘We know that
Z(O‘u +Bu) =7
HEE

and that
(w(a)) = (W™,w™ 1B, | neg)
so the length of w(a) will be
E(w”‘ + w”““ﬁu).
HEE

If £ = § + 1, then by left absorption
lh(w(a)) = w4 w s,

since
, and so we

a++1w)\ (
A

If ¢ is a limit ordinal, then we can strictly bound lh(a) above by w
all g, € w?). We can further refine this by noting that a* € w

are further bounded above by w*". Thus we have that a € S (w?) implies that
w(a) € S(w).
Conversely, suppose that w(a) € S (w“’x). Towards a contradiction, further

suppose that a ¢ S(w?). Without loss of generality, let’s suppose that (h(a) =
w. U

10



5.2 S(a) E CRING
We will need the following lemma before studying multiplication:
Lemma 3. 1. M¢eq;

2. for all p e X, we have oy, B, € a;

3. forallie&, y; € S(a).

Proof. First note that Y, (o, + 8,) = A, since at most a,, = 0 for all p €
HEN

Lim(w‘“ﬁ) u {0}, and the sequence terminates whenever 5, = 0. If A > w*’
then we could not have a sign sequence of length less than we”.

Ife> w“B7 then since the length of each summand in the normal form of a
is at least size 1, we also easily derive a contradiction.

For the second claim, suppose that for i, we had that o, 4+ 3, = a. Then
immediately the length of the sequence is at least a. Contradiction.

For the third claim, if any y; ¢ S(a), then wlog, let lh(y;) = a. Since w(y;)
is given by the sign sequence

(W, W™ * 1B, | e A)

We claim that if y; is of length at least «, then w(y;) will be at least length
w(a).

This claim be verified by an induction argument. If y is length zero, then
w(0) = 1. Suppose this holds for all y of length . Then for any length o + 1,
since the function is extended either by a '+’ or -’ symbol, we let y be a surreal
number with length o and v many alternating pairs:

1. fy=X+1,and B3y = 0: i. for z =y —~ +, the ordinal z* =y + 1, and
sow® =w¥ w3aw’ +1, from which we conclude that w(z) > o + 1. ii.
for z =y ~ —, we have z* =y™, and 8 =1, so

Ih(w(z)) = Ih(w(a)) + ¥ > a+ 1.

2. If y =X+ 1, and () # 0: i. and ii. are similar to the arguments above.

3. If v € Lim(ON), then for either symbol we add, we either increase z*

by 1 or contribute another Wy many "-"

w(z) = a+ 1.

signs. Either way, we have

Finally, suppose this is true for all & € A € Lim(ON). Then for y such that
lh(y) = A\, we must check that lh(w(y)) = A. If y = X or y = —A, then this
will be immediate. Otherwise, let y have v > 1 many pairs. If 7 is not a limit
ordinal, since the length of y = A, by absorption either the final pair is (A, 0) or
{6, Xy where 0 € \. Either way we immediately find that w(y) = A.

At last, if v is a limit ordinal, then we find that either v = A and the

QB € A, or either | J o = A or | beta, = A. In the last two cases, the
pey Hey

11



inequality follows from the arguments above. If v = X, then w(y) will have A
many pairs, and thus will be at least size A.
Thus we find that w(y;) € S(«). O

Further, we prove the following fact:

Theorem 8. For any surreal number with normal form > w¥ir;, the sign se-

SIS
quence is given by

e (wyi 7’7)
Let \; denote the length of each summand, and \{ denote the length of the each
reduced sign sequence. Then the length of a = >, A9 < X\
€€ €€

Proof. This can be checked by induction. The only thing which needs to be
verified is that A\ < A; for any given i. This is immediate, since omitting a ’-’
sign in the sign sequence means that the second argument of some pair drops
from 3, to some B, € 3, from which we will find

Yutlgl Yutl
wH Buew‘ By,

which entails that
Zai-i-ﬁl’»é Zai—&-ﬁi.
A7) i<p

Thus, the sum of the lengths of the sequence

PIRTEDIPIS
O

We note that even if signs are omitted, equality may hold when summing
sequences of a limit ordinal length.
Finally, we are able to prove the following:

Theorem 9. (S(a), +No, ‘No) E CRING if and only if o = w(w(B)), for some
B € ON.

Proof. In the forward direction, suppose that S(«) is a non-trivial characteristic

zero commutative ring. Towards a contradiction, suppose that a = >} w®in;,
i=1
and let © = w®. It follows z € S(«), and by hypothesis, 2" € S(«) for all n € w.
But then wap?2 € S(a), which is impossible since w®? 5 Y w%in,.
el

In the converse direction, with +,- given as the standard surreal number
constructions, if a = w(w(p)) for some G, let a,b € S(a). It suffices to check
that lh(ab) € w(w(p)).

Let a = Y, w®r; and b= ), ws;. By Theorem ??? in [4],

1EA1 JEA2

ab = Z W@+ (15)
(,5)EA1 X Az

12



From Lemma 1 we have that a,,b; € S(c) and from Theorem 7 that a; + b; €
S(«). Furthermore, we have that all real numbers are of length < w, and so all
ris; € S(w*?) for all B € ON. Let A = 0.t.(A; X Az). We check that A € w*”.

Finally, we note that at most [h(a; + b;) = max{lh(a;) + lh(b;),lh(b;) +
lh(a;)} € w*”. This follows from Ih(a;),lh(b;) € w*’ with Cantor forms

that &;,v; € w? for i € [k1] and j € [ko]. Without loss of generality, further
suppose that d; > ~; for all ¢, j. Then we can relabel, §;,v; as p; with [ € [kq+k2]
with p; = §; and pj—k,+; = d1=k,+;, and n;, m; appropriately relabeled. Then

k1+ko 5
Ih(a; + bj) = Z Wy < w (ng +1) € W
1=0

Thus
We now appeal to Theorem 8, and Lemma 1.
Thus S(a) will be closed under multiplication. O

What is remarkable here is that w(w(fS)) are all prime ordinals. However,
w® +1 for all « € ON are also prime, but do not correspond to algebraic objects.
So not all primes classify algebraic theories of interest.

5.3 TODO S(«) = Divisible Abelian Group
5.4 TODO S(«a) k= (- Divisible Group)
5.5 TODO S(a) = RCF

5.6 TODO S(a) = RCVF

% * TODO Proof of Concept The proofs of concepts below are primarily for
binary trees T of a given ordinal height «, such that T" are full up «, and for
proper subclasses of ordinals themselves.

In particular, ht(T) = a, with T full up to o, then T = ] P(8) = No(«).

Bea+1

So the first full subtree that is an (ordered) additive group, i.e. closed under
addition, will be of height w, but each branch is of finite length. Precisely, this
group is the dyadic rationals, which are also a ring. However, Q, and R both
are subtrees of height w + 1, a binary tree of height w + 1 is neither a group nor
a field, since w + w will be a branchof length w?2.

13



6 Maximal subtrees

6.0.1 Groups

Theorem 10. A mazximal initial subtree T of NO is a group if and only if T is
height w(a), for some a € ON.

Proof. In the forward direction, suppose that 7" is a maximal initial subtree of
No is a group. Towards a contradiction, suppose further that 7" is of height
v ¢ w(ON). In particular, v has a Cantor normal form > w®in;, where indexing
el
set I is such that [I| > 1 or ng > 1. Since o; > 41, w*ng will be an element in
T. Moreover, since T is a group, w*ngm will be an element in 7T for all m € w.
But since w*mng > >, w%mn;, we have w*ng2 > > w*n,. Contradiction.
ieI\{0} iel
Moreover, the same argument works when |I| = 1 and ng > 1.

In the converse direction, suppose that T is a maximal initial subtree of
height A = w(a) for some o € ON. Since w(a) is the simplest element in its
respective Archimedean class, and every x,y € T is of length A, by Fact 2.1, and
lh(x)+1h(y) < A, T is closed under addition. Since T is maximal, if x € T, then
—x € T by reversing all the signs in the sign sequence of . The associativity
and commutativity of addition has been studied exhaustively in |1/3,/4]. Thus
T is an (abelian) group. O

We can use the above theorem to also classify which maximal initial subtrees
are ordered abelian groups given the work of [3].

We notice that D is not a divisible ordered abelian group, and so the first
maximal initial subtree that is a non-trivial divisible ordered abelian group must
be at some ordinal w(«a) for @ > 1.

w
In fact, we can show that it must be ¢(0) by considering the lengths of —.
n

For all n, and m < 2™ such that (m,2") = 1, we have that u;—T is a branch of

length w® (n +1). So in particular, wD consists of branches of length w<2. We
now check find that wQ consists of branches up to length w? = w(2), after which
we repeat this procedure to find branchess of length w(3), and so on, finding
branches of w(n) for all n € w, whence the maximal initial binary tree of height
w® will be the first non-trivial divisible abelian group.

Claim. wQ consists of branches of up to length w?.
Proof. Suppose without lost of generality that g has sign expansion {«a;, 3; | i €
wy, with oy, 8; € Z*. Then since w = {w, &), the sign sequence of w% will be

(W@ wad,who) ~ (wai,whi))ocicw

Since %’ is rational, the sign sequence of % eventually repeats itself, and so there
will be a maximal N > «a;, §; for all i € w. Thus lh(w) < Yjw+ M = w2 O
w
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Claim. The maximal initial tree of height w* is the first non-trivial divisible
ordered abelian group.

Proof. Tt is immediate that w® will be closed under addition. We check that
for any a € {z € No | Ih(z) € w*¥}, there is b € {z € NO | lh(z) € w¥} such that
a=b-n,ie ale{reNo|lh(z)ew}

Towards that end, we use Theorem 5 from Section 1 to relate the normal
form of a = > w%r; to its sign sequence —~; <y (wa?ri). In effect, what we must

i<

show is that —~;< (wag 1) is of length < w® for all positive n.

In particular, each if a is of less than length w*, then it is of length less than
w? for some N e N, and moreover, each string (w“?ri) is of length less than

wh, so (w“?%) will be of length less than w™*!, and thus ¢ will be of length
less than w™™2, whence ¢ will be in {z € No | lh(z) € w*}. O

This leads to the next theorem

L 3(z™)
Theorem 11. Let §(x) := {0,w(d(z") -n)} | { on
tree T is a divisible ordered abelian group if and only if T is of height o for some
a € §”ON

}. Then a mazimal binary

Proof. Not sure if this is correct. Working on it. O

6.0.2 TODO More Structures

6.1 TODO Ordinals as algebraic objects
6.1.1 TODO Characteristic p

6.1.2 TODO p-adics
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