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This is a fairly broad overview of the surreal numbers, some interesting
inductive constructions which allow us to regard them as universal domains for
various power series fields equipped with an exponential function, as well as of
logarithmic-exponential series in the sense of Kulhmann [?] and the transseries
in the sense of Schmelling [?]. Furthermore, I provide some broad overview
of the notion of set theoretic forcing. In the process, I hope to provide the
groundwork of results necessary to perform general ordinal analysis and relate
the proofs of consistency strength to constructions one can build with respect
to the surreal numbers

• Eventually I will include a brief overview of the ordinal analysis to be
done.

1 Surreal Numbers
This section is divided into several subsections. The goal is to provide a rel-
atively concise overview of the following: Gonshor’s monograph [?], wherein
which he showed that the surreal numbers form a real closed field with an ex-
ponential and logarithmic map that agree with the ordinary real valued maps;
work by Kuhlmann and Matusinski on exponential-logarithmic classes and the
κ numbers [?]; the recent work of Berarducci and Mantova [?], which defined
a Hardy-type derivation map and established that the surreal numbers form
a field of exponential-logarithmic transseries. Throughout this review, we will
build the following descending chain of proper classes of surreal numbers which
are used in exploring the model theoretic properties of the surreal numbers:

No Ľ ωNo Ľ ωω
No
Ľ κNo Ľ εNo.

The aim going forward with these results will be to study both the model
theory of the surreal numbers and use those results to study various large car-
dinal hypothesis and notions of forcing.

We begin this section by introducing the surreal numbers, some fundamental
existence and cofinality results essential for proving various uniformity theorems,
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several simplicity results, the construction of the reals, and some rudimentary
analysis on the surreal numbers. The next subsection provides definitions for
the field operations. After providing the definitions for the field operations, we
introduce the definitions for the ω and ε numbers, and provide a brief summary
of the κ numbers described in [?]. We then provide a definition for the exp map.
Once we have a defintion of exp, we then give an overview and relevant results
regarding two normals which can be put on the surreal numbers, along with
the sign sequence lemma, which is yet another canonical name for the surreal
numbers (precisely, the sign sequence names the branch of 2On which names a
surreal number). We then explore the log map in some detail, before describing
the log-atomic numbers and finishing our exposition on the κ numbers. Finally,
we provide an overview on the construction of the BBM derivative.

1.1 Numbers and Games
Surreal numbers, denoted by No, relate the theory of transfinite numbers
with mathematical games. Aside from their popular origins in Donald Knuth’s
Surreal Numbers, they were invented as a way to attain a theory of the real
numbers by defining them as strengths of positions of certain games. Specifi-
cally, the surreal numbers are a class of games Game defined with respect to a
transfinitely constructed sets of numbers No given by the following construction
rules:

• If L,R are two sets of No such that @x P L@y P R.x ď y, then there is
a number a “ L | R “ txLu | txRu (with xL and xR denoting typical
elements of the (canonical) sets defining x);

• We inductively define the relation ď by y ď x :“  DpxR ď yq^ DyLpx ď
yLq

• A game consists of two sets, F,G consisting of surreal numbers. We say
II wins if F ă G. Otherwise, the games are said to be incomparable,
which is denoted by F }G.

Alternatively, the surreal numbers can be defined as follows:

Definition. a is a surreal number if it is a function from an initial segment
of the ordinals On (including from the empty set) into the set 2 “ t´,`u.

We define a linear ordering ă on the surreal numbers as follows: if α is the
least ordinal such that apαq ‰ bpαq, then a ă b :“ papαq “ ´q _ pbpαq “ `q,
with the convention that ´ ă 0 ă `.

The common initial segment of two surreal numbers a and b is the number
c whose length is the least α such that apαq ‰ bpαq and for all β P α, cpβq “
apβq “ bpβq. We denote that c is an initial segment of a by c Ă a.

For two sets F ă G, we denote by F |G the unique c of minimal length such
that F ă c ă G.
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As functions from ordinals α to 2, the surreal numbers form a a well-founded
partial order ăs on No called the simplicity relation, with a ăS b if a Ă b as
a function.

Example 1. Here’s a guiding example for canonical sets:

ω ´ 1 :“ tnu | tωu

where n ranges over ω with n “ p`nq understood to be a sequence of n plusses
and ω “ p`ωq is a sequence of ω plusses.

Definition. Given two sets A ă B of surreal numbers, we define the associ-
ated convex class

pA;Bq :“ ty P No | A ă y ă Bu.

By construction, every pA;Bq has a minimal representative with respect to
ăs. Moreover, the canonical representation of a surreal number a are the sets
F ă G for which all members of F,G are simpler than a, and for which a is the
simplest element in pF ;Gq.

Gonshor establishes the following theorems [?]:

Theorem 1. (Fundamental Existence Theorem) Let F,G denote two sets of
surreal numbers such that pa P F ^ b P Gq ñ a ă b. Then there exists a unique
c of minimal length such that a P F ñ a ă c and b P Gñ c ă b. Furthermore,
c is an initial segment of all surreal numbers d such that F ă d ă G.

Every cut has a well-defined element as a consequence of this Fundamental
existence theorem. The following theorems are essential to proving uniformity
theorems for various inductively defined operations; these theorems allow for
various substitutions between canonical sets, and cofinal sets that are more
appropriate for describing the operation at hand.

Theorem 2. (Representation Theorem) Given two sets of numbers F ă G, a
pair pF 1, G1q is cofinal in pF,Gq if

@a P FDb P F 1pa ď bq ^ p@a P GDb P G1q.pb ď aq

Theorem 3. (Main Cofinality Theorem) If a “ F |G, and F 1 ă a ă G1, and
pF 1, G1q is cofinal in pF,Gq, then a “ F 1|G1.

Corollary 1. Suppose pF,Gq and pF 1, G1q are mutually cofinal in one another.
Then F |G “ F 1|G1.

Theorem 4. Let a P No. Suppose that F 1 :“ tb | b ă a ^ b Ă au and let
G1 :“ tb | a ă b^ b Ă au. Then a “ F 1|G1.

Theorem 5. (The Inverse Cofinality Theorem) Let a “ taLu | taRu be the
canonical representation of a and let F,G be such that a “ F |G. Then pF 1, G1q
is cofinal in ptaLu, taRuq “ AL|AR.
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1.1.1 Simplicity relation and binary trees

Surreal number can be understood as a lexicographically ordered tree with a
partial order relation on denoted by ăs for branch predecessors. Alternatively,
we may describe This relationship has been extensively studied by Ehrlich, et.
al [?,?] as forming a simplicity hierarchy (or s-hierarchy).

Definition. A representation of a “ F |G is simple if a ďs y implies F ă y ă
G

We now recall some definitions of trees:

Definition. A tree pT,ăsq is a partially ordered class such that for each x P T ,
the predecessors,

prT pxq :“ ty P T | y ăs xu

form a set well-ordered by ăs.
The branches of a tree form a maximal subclass of maximal subclasses or-

dered by ăs.
x, y P T are incomparable if x ‰ y ^ x ­ăs y ^ y ­ăs x. We denote

incomparability by xKy.
The tree-rank of x P T is denoted by ρT pxq, and is defined to be the ordinal

corresponding to the well-ordering of the set xprT pxq,ăsy.
The α level of a tree Tα :“ tx P T | ρT pxq “ αu. A root of T is a member

of the zeroth level.
An immediate successor of x is any y such that x ăs y and ρT pyq “

ρT pxq ` 1. For any chain of pxαqαPβ in T, y is a successor of the chain if
xα ăs y and

ρT pyq “ inftγ P On | ρT pxq “ γu

.
A tree T is binary if each member of T has at most two immediate succes-

sors, and every chain in T of limit length has at most one immediate successor.
A tree T is lexicographically ordered if for all x, y xKy if and only if there

is z ăs x, y and x ă z ă y or y ă z ă x.
A tree T is full if every member of T has immediaate successors, and every

chain of T of limit length has an imediate successor. Consequently, the universe
of a full tree T forms a proper class.

A lexicographically ordered tree T is complete if for any two subsets L,R
of T such that L ă R, there is an x P T such that L ă x ă R.

Theorem 6. Every pT,ă,ăsq is a lexicographically ordered binary tree is iso-
morphic to an initial subtree of pNo,ă,ăsq. In particular, the surreal numbers
are a lexicographically ordered binary tree.

The following are some elementary facts of ăs which can be found in [?,?,?]:

Fact 1. Let a, b, c, x, y P No:

1. if c ăs x ďs y, then c ă x ðñ c ă y;
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2. if a “ F |G, and F YG only contain x ăs a, then F |G is simple.

3. A lexicographically ordered binary tree is complete if and only if it is full
if and only if it is isomorphic to pNo,ă,ăsq.

Proposition 1. pNo,ăosq is a separative partial order under reverse inclusion.

Proof. It is immediate that No is partially ordered by ăs, and so No will also
be partially ordered by the opposite ăos, with top element 0.

Now suppose a, b P No have tree rank α, β respectively and are such that
a ­ďos b. Then b Ć a, and so either a Ă b or aKb.

If a Ă b, then there is some x P t´,`u such that a " x Ă b. Let y “  x
(i.e.  ´ “ ` and  ` “ ´), and consider c “ a " y. Then a Ă c, hence c ďos a
and cKb as desired. If aKb, then we may take a “ c.

1.1.2 Real numbers

While it can be readily seen that the surreal numbers contain the dyadic ratio-
nals, D, we use the following definition to define the real subset of the surreal
numbers.

Definition. A real number is a surreal number a which is either of length
ď ω, such that if lhpaq “ ω, then

@n0Dn1Dn2rn1 ě n0 ^ n2 ě n0 ^ apn1q “ ` ^ apn2q “ ´s

It is worth noting that the definition of real numbers above cannot dis-
tinguish between rational and irrational real numbers, nor can we distinguish
between rational and irrational elements based on the canonical representation
of a surreal number. To check that the set of reals forms a field, one must check
the closure properties under the operations defined below in the next subsection.

The following list of facts can be found in [?] Chapter 4 Section C.

Fact 2. 1. Let F,G be non-empty sets of dyadic fractions such that F ă G,
F has no maximum and G has no minimum. Then F |G is a real number.

2. If a “ F |G,
@x P FDa P Dą0Dypyx` r ^ y P F q,

and
@x P GDr P Dą0Dypy ď x´ r ^ y P Gq,

and F 1 ă a ă G1, and

@r P Dą0Dx P F
1Dy P G1py ´ x ď rq,

then a “ F 1|G1.

3. There are an infinite number of dyadic rationals between any two distinct
real a and b.
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4. If a “ F |G is the canonical representation of a non-dyadic real number,
then for all positive dyadic rationals r, there exist b P F, c P G such that
c´ b ď r

Theorem 7. The subset of reals R Ĺ No has the lub property.

Proof. While any set which has no maximum in the surreal numbers will have
no least upper bound in the class of the surreal numbers as a consequence of the
existence of gaps (or more simply, the infinitesimal numbers), we can prove that
every bounded non-empty set of real numbers has a least upper bound within
the set of reals using the facts above.

Let H be a non-empty set of real numbers bounded above, and let G be
the set of all dyadic rationals which are upper bounds of H, and let F be the
complement of G in D. Since F,G are non-empty, the facts above, F has no
maximum, and if G had a minimum b, then b would be a least upper bound to
H, and thus we’re done.

So, further suppose that G has no minimum. Then r “ F |G will be a real
number. We check that r “ lubH.

First, we note that r is an upper bound to H, as otherwise, there is some
a P H such that r ă a, and then there is some dyadic rational d such that
r ă d ă a. But since d ă a P H, d P F , and therefore since r ă d, we contradict
that F ă r.

Finally, towards another contradiction, suppose that s is an upperbound to
H such that s ă r. Let s ă d ă r for some d P D. This d is also an upper bound
to H, and hence d P G. But d ă r ă G. Contradiction.

Thus we have that r “ F |G is a real number, and since H was arbitrary, we
have established that the R has the least upper bound property.

Notation. By the theorem above, we may denote the subfield R Ă No of reals
by the ordinary boldface R.

1.1.3 Elementary Surreal Analysis: Gaps

While surreal numbers are definable with respect to cuts defined with respect
to sets, one can form a cut of sorts with respect to classes, known as a gap, for
which there is no surreal number that can satisfy the gap (as a consequence,
the surreal numbers form a totally disconnected space). More precisely:

Definition.

We classify gaps into two types:

1.2 Field Operations
Definition. We define the ring operations `, ¨ as follows

a` b :“ taL ` b, a` bLu | taR ` b, a` bRu

a¨b :“ taL¨b`a¨bL´aL¨bL, aR¨b`a¨bR´aR¨bRu | taL¨b`a¨bR´aL¨bR, aR¨b`a¨bL´aR¨bLu
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Theorem 8. The surreal numbers form a commutative ordered ring with unity.

Proof. A full proof of this can be found in Chapter 2 of [?].

Definition. If a ą 0, then the multiplicative inverse of a is defined as follows:
Let a “ AL|AR. Define xa1, a2, . . . any for every finite sequence where ai P

AL YARzt0u, and let 0 “ xy and xa1, . . . anydeg an`1 “ xa1, . . . , an, an`1y.
For arbitrary b, define bdeg ai to be the unique solution to

pa´ aiqb` aix “ 1

By induction, each ai will be an initial segment of a, and will have an inverse,
with uniqueness following.

Then for a P Noˆ, a´1 “ F |G where F “ txa1, . . . , any | the number of ai P
AL is evenu and G “ txa1, . . . , any | the number of ai P AL is oddu

One can find in [?] the proof of the following:

Theorem 9. No is a real closed field

1.3 ω and generalized ε numbers
Two interesting maps related to the study of large ordinals and cardinals are
the ω and ε maps.

Definition. Let a „ b if and only if there exists an integer n such that na ě b^
nb ě a. This equivalence relation classifies numbers by their order of magnitude.

Let a " b if and only if for all integers n pnb ď aq, and a ! b if and only if
b " a. It follows that each „ equivalence class is convex.

We now inductively define ω : NoÑ Noą0 as follows:

ωa “ ωpaq :“ t0, rωpaLq | r P Rą0u | tsωpa
Rq | s P Rą0u

The following results from [?] warrant statement and proofs, as they will
establish the properties to show that the value group of the surreal numbers are
the surreals themselves.

Theorem 10. For every a P Noą0 there exists an unique x of minimal length
such that x „ a.

Proof. By well-ordering, there exists an x of minimal length such that x „ a.
If there existed a distinct y „ x „ a, of minimal length, then with z Ă x, y, it
would follow by the convexity of „ classes that z „ a. Since lhpzq ă lhpxq, we
have a contradition of the minimality of x.

Theorem 11. ωpaq is defined for all a P No, ωpaq ą 0, and a ă b ñ ωpaq !
ωpbq.
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Proof. As is standard in proofs on No, we prove this by induction on the length
of a.

Since aL ă aR, by our inductive hypothesis, ωpaLq ! ωpaRq. Hence for all
positive reals r, s, we have 0 ă rωpaLq ă sωpaRq. Hence ωpaq will be defined,
and since 0 is a lower element in its definition, 0 ă ωpaq.

Suppose a ă b and c is a common initial segment. Then if c “ a or c “ b,
we’re done. Otherewise, we have ωpaq ! ωpcq ! ωpdq.

Theorem 12. An element a “ ωb if and only if a is the element of minimal
length in its „ equivalence class.

Proof. Unfolding the definition, we have ωb “ ωpbq “ t0, rωpblqu | tsωpbRqu. If
x „ ωpbq, then rωpbLq ă x ă sωpbRq since r, s are arbitrary positive reals. Thus
ωpbq must be an initial segment of x, so we have lhpωpbqq ď lhpxq.

Conversely, we must show every positive element is equivalent to an element
of the form ωpbq. Given the inequality, b ă c ñ ωpbq ! ωpcq, if an element
exists, it must be unique.

We proceed by induction. Set a “ AL|AR. We have 0 P AL. Every element
in AL Y AR is equivalent to an element of the form ωpbq by our induction
hypothesis.

Now set F “ ty | Dx P ALpx „ ωpyqqu and G “ ty | Dx P ARpx „ ωpyqqu.
Suppose that F XG “ H.

We claim that F ă G. If not, then there is x ą y such that x P F and y P G.
Then ωpxq „ aL and $ω(y)„ aR, hence x ą y ñ ωpxq " ωpyq ñ aL " aR ñ K.
Thus F ă G and there is a z “ F |G.

Let ωpF q be the complete set of representatives for the equivalence classes
containing the elements of ALzt0u, and similarly for ωpGq with respect to AR.

We now evaluate the following three cases:
Case 1 rωpxq ě a for some positive real r and some x P F . Let aL such

that aL „ ωpxq. Then aL ď a ď rωpxq. But we have aL „ ωpxq „ rωpxq, and
hence a „ ωpxq. Case 2 rωpxq ď a for some positive real r and some x P G.
Let aR satisfy aR „ ωpxq. Then rωpxq ď a ď aR, but rωpxq „ ωpxq „ aR,
and hence a „ ωpxq. Case 3 If neither case 1 nor case 2 is satisfied, then
rωpF q ă a ă sωpGq. Let aL ‰ 0. Then there exists some x P F such that
aL „ ωpxq, and for some real r, rωpxq ě a. Similarly for aR we have some real
s such that sωpxq ď aR.

Since a “ AL|AR, the cofinality condition is satisfied for t0, rωpF qu | tsωGu.
Hence a “ t0, rωpF qu | tsωGu “ ωpzq.

The theorem now follows since ωpbq has the minimal length property.

Looking ahead, with ωa “ ωpaq the representative of minimal length in its
respective Archimedean equivalence class, we can put each surreal number
into a Conway normal form (see below), as well as put a natural valuation on
each surreal number which sends each a “

ř

ωairi to a0.

Definition. Let ωNo “ ω”No “ M denote the group of generalized mono-
mials.

It is immediate by construction that ωNo Ĺ No.
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1.3.1 εnumbers

Definition. We inductively define ε :Ñą0 as follows: Let ω1paq “ ωpaq and
ωn`1 “ ωpωnpaqq.

Let a “ AL|AR be given its canonical representation. Let

εpaq “ tωnp1q, ωnrpa
Lq ` 1su | tωnrεpa

Rq ´ 1su

where n ranges over positive integers.

We note that εp0q “ tωnp1qu | tu “ lubtωnp1qu “ ε, the first ordinary epsilon
number. It is worth remarking that Gentzen showed that transfinite induction
up to εp0q suffices to prove the consistency of PA [?]. It warrants investigation
how ordinal analysis can relate to various inductively defined ordinal operations
on the surreal numbers. The following proof can be found on page 122 of [?].

Theorem 13. 1. εpaq is defined for all a P No and ωpεpaqq “ εpaq.

2. εpaq is a strictly increasing function and εpaq ą ωnp1q for all a and positive
integers n.

Definition. Let No"1
ą0 denote the class of positive valued Archimedean equiva-

lences classes whose elements ą R.
We define ωω

No
to be the chain of fundamental monomials of No. ωω

No

is a proper class which is a complete set of represetatives of the comparability
classes No"1

ą0, with each element being the one of minimal length in its respective
equivalence class.

We now have
ωω

No
Ĺ ωNo Ĺ No

1.3.2 Higher order fixed points

Theorem 14. Let f : NoÑ No be a function with the following properties:

1. for all a, fpaq is a power of ω;

2. a ă bñ fpaq ă fpbq

3. There exist fixed sets C and D such that if a “ G|H with G containing
no maximum and H no minimum, then fpaq “ rC, fpGqs|rD, fpHqs.

Then there exists a function g which is onto the set of all fixed points of
f and whcih satisfies the above hypothesis on the sets fnpCq and fnpDq, for
arbitrary positive n iterations.

1.4 exp

In this subsection we provide a brief overview of the exp map detailed in [?].
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Definition. For each x P No and n P ω, let

rxsn :“
ÿ

iďn

xn

n!

We define exp :Ñą0 by

exppxq :“ t0, exppxLqrx´xLsn, expx
Rrx´xRs2n`1u | t

expxR

rxR ´ xsn
,

expxL

rxL ´ xs2n`1
u

The following facts have proofs from Chapter 10 of [?] or from immediate
examples.

Fact 3. 1. exp is a monotonic function onto Noą0;

2. exp æ R is the real exponential function.

3. exppx ` yq “ exppxq exppyq for all x, y P No; furthermore, exp is an
isomorphism between ordered abelian groups pNo,`,ăq and pNoą0, ¨,ăq.

4. exppxq is a power of ω and if a ą 0, then exppωaq has the form ωpωpbqq.

5. exp is not a $<s$-hierarchy preserving map.

6. For x P Noą0, exppωpxqq “ ωpωpgpxqqq, where g : Noą0 Ñ No defined by

gpxq :“ tcpxq, gpxLqu | tgpxRqu,

with cpxq the unique number such that ωpcpxqq „ x.

The following result from van den Dries and Ehrlich is of model theoretic
interest [?].

Theorem 15. The surreal numbers are a model of the elementary theory of the
field of real numbers with the exponential function.

1.4.1 TODO κ numbers pt 1

1.5 Normal Forms and Standard Form
Every surreal number x P No has a Conway normal form. Specifically, for
every x P No, there is an α P On, a sequence of real numbers priqiPα, and a
descending sequence of surreal numbers paiqiPα such that

x “
ÿ

iPα

ωpaiqri

where paiqiPαWe define support of a surreal number a to be the set

Spaq :“ ty P No | Dβ P αpy “ yα ^ rα ‰ 0qu.
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Definition. Let x P No. If we express x “
ř

m
xmm, as above:

1. The support of x is the set Spxq :“ tm PM | xm ‰ 0u;

2. The terms of x are the elements of the set txmm | xm ‰ 0u Ă RˆM;

3. The coefficient of m in x is xm;

4. The leading monomial of x is the maximal monomial in Spxq;

5. The leading term of x is the leading monomial multiplied by its coeffi-
cient.

6. Given m PM, the truncation of x at m is the number

x æ:“
ÿ

măn

xnn

.

7. If y P No is a truncation of x, we denote this by y � x.

Following [?], we have the following inductively defined map Σ : RppMqq Ñ
No:

Definition. Let f P RppMqq. With fm P R and m PM, and f æ m denoting the
truncation at m, we define:

1. If Spfq “ H, then Σf :“ 0 P No;

2. If Spfq contains a smallest monomial n, define

Σf :“ Σf æ n` fnn

3. If Spfq ‰ H and has no smallest monomial, with qL, qR arbitrary dyadic
rationals such that $qL<f

{m}<qR$
Σf :“ tΣf æ m` qLmu | tΣf æ m` qRmu

In particular, we recognize that

No “ RppωNoqq “ RppMqq

Given that we may regard ωNo as the complete system of representatives
of Archimedean equivalence classes of Noą0, and that we can take the map
Ind from [?] that sends each surreal number to the exponent a0 of its leading
monomial in normal form, we may regard the surreal numbers as a valued field
which is its own value group. Moreover, Kuhlmann showed in [?] that Ind is the
natural valuation of the real closed field No, with Indpωaq “ a for all a P No.

We can further deduce that No is a Hahn field of series in the following
sense: [?]
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Theorem 16. 1. For any a P No, pωpωpaqq is the representative of minimal
length in No"1

ą0, i.e.

@x, y P No"1
ą0, x „comp y ðñ pDn P ωpxn ě y ě x1{nq

We set x „comp 1
x .

2. Any a P No can be uniquely written as

where for any i,
ai “

ÿ

jPλi

ωbi,j

, the paiqiPλ, pbi,jqjPλi form descending sequences of surreals, and for any i, j,
we have si,j , ri P Rˆ, so that

ωpaiq “
ź

jăλi

´

ωωpbi,j
¯si,j

In particular, using the definition of Hahn fields from [?], we find

No “ R
ˆˆ

´

ωω
No
¯R

˙˙

We let J Ă No denote the (class) non-unital ring of infinite surreal numbers.
Specifically, they’re the surreal numbers whose supports have infinite monomi-
als, so

J :“ ta | @y P SpaqDz ą 0py “ ωpzqqu “ No"1
Y t0u

It follows from the constructions above that

ωpNoq “ exppJq

A very important substructure of the surreal numbers are the omnific in-
tegers.

Definition. The omnific integers are the numbers of the form x “ tx ´
1u | tx ` 1u. The class of omnific integers, denoted Oz, has the direct sum
decomposition J‘ Z.

Remark. We note that surreal numbers can be given a natural direct sum de-
composition of

No “ J‘ R‘ op1q
where op1q denotes the class of inifinitesimal numbers.

We may also put the surreal numbers in Ressayre normal form, as in
each $xP No

x “
ÿ

iPβ

exppyiqri

where pyiqiPβ is a descending sequence of surreal numbers.
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Definition. Given x ‰ 0 with Ressayre normal form
ř

aPJ
ra exppaq, with ra ‰ 0

if and only if a P Spxq, we define ` : Noˆ Ñ J by `pxq “ maxta P J | ra ‰ 0u.

Remark. The map above can be regarded as the logarithm a of the largest
monomial m “ exppaq appearing in the Conway normal form of x. Further, ´`
defines a Krull valuation on No, given that

1. `px` yq ď maxt`pxq, `pyqu

2. `pxyq “ `pxq ` `pyq.

An almost immediate consequence of these two normal forms is that the
surreal numbers can be understood as a valued field which is its own valued
group.

The following are facts about the normal form with respect to the simplicity
hierarchy (see [?] for more details):

Fact 4. 1. For all a, b P No, ωpaq ăs ωpbq if and only if a ăs b.

2. If a ăs b, then ωpxqa ăs ωpxqb.

3.
ř

iPµ

ωpyiqri ăs
ř

jPν

ωpyjqrj whenever µ ăs ν

4. If µ is a limit ordinal, then with γ ranging over µ, and n ranging over ω,
we have
ÿ

iPµ

:“ t
ÿ

iPγ

ωpyiqri ` ωpyγqprγ ´
1

2n
qu | t

ÿ

iPγ

ωpyiqri ` ωpyγqprγ `
1

2n
qu

5. If r P RzD, or r P DzZ and there is no yL, then

ωpyqr “ tωpyqrLu | tωpyqrRu

6. For all rL, rR,
ωpyqrL ăs ωpyqr

and
ωpyqrR ăs ωpyqr

7. If r P DzZ, and there exist yL, then

ωpyqr “ tωpyq ` rL ` ωpyLqnu | tωpyqrR ´ ωpyLqnu

8. ωpyqrL ` ωpyLqn ăs ωpyqr.

9. ωpyqrR ´ ωpyLqn ă sωpyqr.

10. For all n, 1
2nωpx

Rq ăs ωpxq.

Consequently, we have

Proposition 2. If x� y, then x ăs y.

We can also see that � is a weakening of ăs once we have our results on the
sign sequence of surreal numbers.
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1.5.1 Sign-sequence representation

The following results are a summary of Gonshor Chapter 8 [?], as well as some
new results of Kuhlmann and Matusinski [?]. While each author has their own
preferred notation for concatenation and representing the sign sequence, we have
opted to use notation keeping in line with work found in Kunen [?], Jech [?],
and other more set theoretically inclined authors [?].

Definition. Recall that the surreal numbers may be regarded as (partial) func-
tions from OnÑ 2, so that for two surreal numbers a, b, we may concatenate
them to form a third number, a " b. The concatenation operation respects
standard results on ordinal length, i.e.

lhpa " bq “ lhpaq ‘ lhpbq

as can be verified by an induction argument on the lengths of numbers.

Notation. Every surreal number a can be written as a transfinite concatenation
of ´ and `

a “ p`α0
´β0

`α1
´β1

¨ ¨ ¨ q,

with `α (respectively ´β) denoting a string of ` (resp. -) of length α (resp. β),
and where for any µ P On, αµ, βµ P On with αµ possibly being 0 for µ “ 0 or
µ P LimpOnq.

For concision, we will denote by (a) the sign sequence of a, and write out
the sign sequence as the sequence of ordered pairs pxαi, βiy : i P γq.

Definition. Given a P No, let a` denote the total number of ` appearing in
the sign sequence of a, so

a` “
ÿ

µ

αµ

as an ordinal sum.
Given a P Noą0, define a5 to be the surreal number attained by omitting the

first ` sign.
Given a P Noă0, define a7 to be the surreal number attained by omitting the

first ´ sign.
Given a surreal in normal form a “

ř

iPλ

ωairi, the reduced sequence paoi qiPλ

is attained by omitting - in the following sign sequences:

• given γ P On, if aipγq “ ´ and there exists j ă i such that $aj(δ)=ai(δ)
for all δ ď γ, then omit the δth -;

• if i is a successor, ai´1 " ´ Ă ai and if ri´1 is not a dyadic rational,
then omit the - after ai´1 in ai.

The following theorems provide a concise overview of the sign sequence
lemma, as well as the sign sequence of generalized epsilon numbers.

14



Theorem 17. Given a “ pxαi, βiyq, for any µ P On appearing in the sign
expansion of a, we set

γµ :“
ÿ

λďµ

αλ

Then ωa has the sign sequence

xωγ0 , ωγ0`1βy " pxωγi , ωγ1`1βiyq0ăiăµ

Theorem 18. Given a positive real r with sign sequence pxρi, σiyq, the sign
sequence of ωar is

pωaq " xωa
`

ρ50, ω
a`σ0y " pxωa

`

ρi, ω
a`σiyq

with ωa
`

ρ and ωa
`

σ being the standard ordinal multiplication (with absorption).
If r is a negative real, we reverse the signs.

Theorem 19. Given a “
ř

iăλ

ωairi,

paq “"iăλ ω
aoi priq

The following theorem is a combination of theorems 9.5 and 9.6 in [?]

Theorem 20. 1. a “ pxαi, βiyq is an epsilon number if and only if α0 ‰ 0,
all αµ ‰ 0 are ordinary epsilon numbers such that αµ ą lubtαλ | λ ă µu,
and βµ is a multiple of ωαµω for all αµ ‰ 0, and a multiple of ωγµω where
δµ “

ř

λăµ

αµ for αµ “ 0.

2. Let γµ “
ř

λďµ

αλ. Then the µth block of + in εpaq consists of eγµ +’s and

the µth block of -’s will consist of pεγµqωβµ -’s.

1.5.2 A quick review of summability

Having identified surreal numbers with RppMqq, we can explore the notion of
infinite sums. Namely,

Definition. Let pxiqiPI be an indexed set of surreal numbers. We say pxiqI is
summable if

Ť

I

Spxiq is reverse well-ordered, and if for each m P
Ť

Spxiq there

are only finitely many i P I such that m P Spxiq.
When pxiqI is summable, then the sum

y :“
ÿ

iPI

xi

is the unique surreal number such that:

• Spyq Ď
Ť

I Spxiq

15



• for every m PM, ym “ p
ř

iPI

xiqm “
ř

iPI

xim

Definition. A function F : NoÑ No is strongly linear if for all x “
ř

xmm,

F pxq “
ÿ

xmF pmq.

In particular, pxmF pmqq is summable.

Proposition 3. IF F is a strongly linear function, then for any summable pxiq,
the family pF pxiqq is summable and

F p
ÿ

xiq “
ÿ

F pxiq

Proof. The following one line proof is from [?]:

F p
ÿ

xiq “ F

˜

ÿ

mPM

˜

ÿ

iPI

xi

¸

m

m

¸

“
ÿ

mPM

ÿ

iPI

ximF pmq “
ÿ

iPI

F pxiq

1.5.3 Nested truncation and standard forms

As observed above, we have that the ω map monotonically preserves simplicity,
but that the exp map does not (as will be made clearer once we have log de-
fined). However, there are a subclass of numbers where exp is a monotonic map
preserving simplicity, as the following theorem from [?] shows

Theorem 21. If a, b P J and a� b, then exppaq ďs exppbq.

In general, the above result is not sufficient for studying exp and ďs. The
authors [?] remedied this by introducing the notion of nested truncation and
a corresponding rank.

Definition. A finite sum of surreal numbers y “ x1 ` x2 ` ¨ ¨ ¨ ` xn is in
standard form if Spx1q ą Spx2q ą ¨ ¨ ¨ ą Spxnq.

For x P Noˆ, set sgnpxq “ 1 if x ą 0 and sgnpxq “ ´1 otherwise.
We then inductively define ranks đ

´n
on Noˆ over n P ω as follows:

1. x đ
´0
y if x� y;

2. x đ
´n`1

y if there are a đ
´n

b with a, b P J˚, and z, w P No and r P Rˆ such

that
x “ z ` sgnprq exppaq

y “ z ` r exppbq ` w

where both sums are in standard form.
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We say x đ
´
y, or that x is a nested truncation of y if there is an n such

that x đ
´n

y.

đ
´
induces a foundation rank, which we define as follows:

Definition. For all x P Noˆ, the nested truncation rank, NRpxq is defined
by

NRpxq :“ suptNRpyq ` 1 | y đ
´
x

With NRp0q “ 0

Remark. Since all real numbers have no proper truncations, we find that R has
nested truncation rank 0

Theorem 22. đ
´
partially orders Noˆ.

Proof. It is immediate that đ
´
is reflexive since x� x for all x.

We prove antisymmetry as follows. Suppose for some n that x đ
´n
y and y đ

´
x.

Immediately o.t. S(x) = o.t. S(y). Proceeding by induction on n, for n=0, we
have x “ y. For n ą 0, write x and y in the standard forms as above with
a đ
´n´1

b. By the observation on order types, we have that w “ 0 and by the

hypothesis that y đ
´
x, we have that r “ sgnprq, and b đ

´
a. But then by our

inductive hypothesis, we have a “ b, and hence x “ y.
We prove transitivity as follows: Supposing for n,m P ω that x đ

´n
y đ
´m

z. If

n “ 0, then x� y, from which it follows that x đ
´m

z as a truncation. Similarly,

if m “ 0, we have y � z, from which x đ
´n

z. If m,n ą 0, write y and z in the

following standard forms

y “ u` sgnprq exppbq

z “ u` r exppcq ` w

with b đm´1 c (and $b,cP J*). We are done if x đ
´n

z, as z � u implies x đ
´n

u.

Otherwise,  pxđ
´n
zq, so we must have x “ z`sgnprq exppaq with ađ

´n´1
b and

a P J˚. By our induction hypothesis, we have that a đ
´
c, from which x đ

´
u.

[?] establish the following facts on đ
´
:

Fact 5. 1. For all x, y P Noˆ and z P No, if z`x and z`y are in standard
form, then x đ

´
y ðñ x` z đ

´
y ` z.

2. For all x P Noˆ, and m PM, if x đ
´
m, then x PM.

3. đ
´
is the smallest transitive relation such that:
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• for all x, y P Noˆ, x� y ñ x đ
´
y;

• for all a, b P J˚, a đ
´
b implies that exppaq đ

´
exppbq and ´ exppaq đ

´

´ exppbq;

• for all m PM‰1 and r P Rˆ, sgnprqm đ
´
rm;

• @x, y P Noˆ, and z P No, if z ` x, z ` y are both in standard form,
then if x đ

´
y, then z ` x đ

´
z ` y.

4. For all x P No, the class ty P No | x� yu is convex.

5. For all x P Noˆ, the class ty P Noˆxyu is convex.

6. J is closed under � and đ
´
. Namely, for all x P Noˆ and a P J˚, if x đ

´
a,

then a P J˚.

7. x đ
´
y implies that x ďs y, implying that đ

´
is well-founded, so that đ

´
has

an associated ordinal rank which we’ll call our nested tree rank.

We state without proof several facts regarding the nested truncation rank:

Fact 6. 1. For all x P No, NRpxq “ NRp´xq.

2. For all a P J, NRpaq “ NRp˘ exppaqq.

3. For all m PM‰1, and r P Rˆ, if r ‰ ˘1, then NRprmq “ NRpmq ` 1 ą
NRpmq.

4. If x ‰ 0, and if rm is a term of x, then NRprmq ď NRpxq and if NRpmq
is not minimal in Spxq, then NRprmq ă NRpxq.

1.6 log

1.6.1 Introducing the g function

While we had shown that for a ą 0, exppωaq is of the form ωω
b

without us-
ing inductionl, we actually are able to inductively define gpaq using orders of
magnitude, as follows:

Theorem 23. Letting a “
ř

α
ωairi, we set c “ a0, i.e. c is the unique surreal

number such that a „ ωc. Then

gpaq :“ tc, gpaLqu | tgpaRqu

Proof. From our earlier work, we have for positive surreal numbers x that

exppωxq “ ωGpxq

so we identify Gpaq “ ωgpaq by the theorem where g was introduced.
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Now, we define Gp0q “ 0, and then from the proof where g was introduced,
by cofinality we find that

Gpaq :“ trGpaLq ` nau | tsGpaRqu “ t0, rfpaLq ` nau | tsfpaRqu.

Then, by inductively substituting Gpaoq “ ωgpa
o
q, we obtain

Gpaq “ t0, na, rωgpaLq ` nau | tsωgpaRqu.

Since na will be equicofinal with nωc and rωgpaLq ` na will be equicofinal
with rωgpaLq ` nωc and thus equicofinal with

nωmaxpgpaLq,cq,

we find that
Gpaq “ t0, nωc, nωmaxpgpaLq,cqu | tsωgpaRqu.

Thus, with Gpaq “ ωgpaq, by our definition of the ω map and cofinality we have

gpaq “ tc,maxpgpaLq, cqu | tgpaRqu “ tc, gpaLqu | tgpaRqu

Example 2. We quickly verify that exppωεq “ ω using g as follows. By induc-
tion, assume that gp2´nq “ 2´n. Then

gp2´n´1q “ gpt0u | t2´nuq “ t0u | tgp2´nqu “ t0u | t2´nu “ 2´n´1

whence
gpω´1q “ gpt0u | t2´nuq “ t´1u | t2´nu “ 0.

Thus
exppωεq “ ωω

0

“ ω.

Remark. So far, the definition of g does not seem to have warranted my earlier
comments about the difficulties of tersely describing g. There are plenty of
results to come which ought to justify my comments; suffice to say that g is not
an identity function due to a „ ωc. In fact, gpxq may take on negative values,
which is entirely consistent with ωω

x

being positively infinite for all x P No.
However, the main reason that it has taken awhile to introduce g is that

the study of the epsilon numbers in No, and particularly the behavior of these
numbers under the exp map, is closely tied to the g function. Furthermore, many
of the results pertaining to the g function require our still as of yet unstated and
unproven sign representation lemma. Again, we shall defer studying both until
we have some more results pertaining to our exp and log functions, and the
questions raised in the past few papers.
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1.6.2 Exponential and Natural Log Revisited

The original reason we introduced g in the first place was to study how exp
transforms normal forms. Towards that end we will prove the following gener-
alized linearity property for exp:

Theorem 24. If ai ą 0 for all i P α, then

expp
ÿ

α

ωairiq “ ωy

where
y “

ÿ

α

ωgpaqiri

with gpaqi “ gpaiq.

Proof. Since expx and ωx are both homomorphisms, this follows immediately
for all finite sums and rational ri. From here, we proceed in stages.

First, for monomials ωar “ tωarLu | tω
arRu, where ro are given as some

dyadic representation, by induction and the density of the dyadic representations
in R, we have that

exppωarq “ t0, exppωarLqnrω
ar ´ ωarLsu | t

exppωarRq

nrωarR ´ ωars
u.

We then simplify the representatives by mutual cofinality to

exppωarq “ t0, ωω
gpaqrL`nau | tωω

gpaqrR´nau.

Hence, we have
ωω

gpaq

ą ωna

from which
ωgpaq ą na

follows in general for all positive integers. Thus

ωgpaq ą
n

r ´ rL
a ” ωgpaqr ´ ωgpaqrL ą na,

whence
ωgpaqrR ´ na ą ωgpaqr ą ωgpaqrL ` na.

Having satisfied the inbetweenness condition and since the lower terms have
no maximum and the upper terms have no minimum, by cofinality we find that

ωω
gpaqr :“ t0, ωω

gpaqrLu | tωω
gpaqrRu

.
We now proceed to induct on α for arbitrary sums.
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The non-limit cases follow immediately by the additive properties of the exp
and ω maps.

Supposing that α is a limit ordinal, then for arbitrary γ P α and finite s ą 0,
ÿ

α

ωairi “ t
ÿ

γ

ωairi ´ ω
aγsu | t

ÿ

γ

ωairi ` ω
aγsu,

whence

expp
ÿ

α

ωairiq “ t0, expp
ÿ

γ

ωairi´ω
αγsqpωaγσqnu | texpp

ÿ

γ

ωairi`ω
aγ qpωaγρq´nu,

where σ (and similarly ρ) is such that

ωaγσ “ ωαγs`
ÿ

αzγ

ωairi

i.e. |s´ σ|, |s´ ρ| will be infinitesimal.
Furthermore,

ÿ

α

ωgpaqiri “ t
ÿ

γ

ωrgpaq´gpaqω
gpaγqsu | t

ÿ

γ

ωgpaqiri ` ω
gpaγqsu,

and since the lower terms have no maximum and the upper terms have no
minimum, we find that

ω

ř

α
ωgpaqiri

“ t0, ωF u | tωGu

where F,G are the set of lower and upper terms respectively.
As is common in all of these proofs, we will use cofinality to show that

the representation of expp
ř

α
ωairiq will give ω

ř

α
ωgpaqiri

after first verifying the

betweenness condition.
The betweenness condition follows by mutual cofinality and several obvi-

ous substitutions such as ωgpaq ą na for all n P Z, and from s not being an
infinitesimal. Specifically, a common lower term will be

expp
ÿ

γ

ωairi ´ ω
aγsqωnaγ “ ωy

where y “
ř

γ
ωgpaqiri´ω

gpaγqs`naγ by the inductive hypothesis and the addi-

tivity of exp.
We then see the betweenness for lower terms is satsfied as

ωy ă
ÿ

γ

ωgpaqiri ´ ω
gpaγq

s

2
ă
ÿ

γ

ωgpaqiri,

and a similar inequality holds for the upper terms, so that by the inductive
hypothesis, a typical term of ωF is of the form expp

ř

γ
ωairi ´ ωαγsq. Since

a ą 0 by hypothesis, we have that ωna ě 1 and this completes the proof for
representatives of ωF . A similar argument is run for ωG.
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Remark. As a consequence of this result, studying the behavior of expx reduces
to studying g.

1.6.3 The Uniformity of the Natural Log

Having seen that the task of studying exp reduces to studying g, we naturally
ought to ask is there something similar that we can use to study log?

The answer is yes, but before we define an h function that acts as the inverse
of g, we need to check that we can obtain logpωaq using representations of
a “ taLu | taRu “ F |G.

The uniformity theorem is valid for the natural log function.

Proof. The following inequalities are derived from standard order of magnitude
arguments and properties we have established about the ω map:

For lower elements aL ă x ă a, we have logpωxq ` n ě logpωaLq ` n and
logpωxq ` ω

a´x
n ď logpωaLq ` ω

a´aL
n .

For upper elements a ă x ă aR,logpωxq ` n ď logpωaRq ` n and logpωxq ´

ω
x´b
n ě logpωbRq ´ ω

aR´a

n .
Once we have these inequalities have been established, as with all uniformity

theorem proofs, the rest of the proof is handled by the use of the inverse cofinality
theorem and an application of the cofinality theorems.

1.6.4 TODO log : No` � No

Theorem 25. For all a P No, lnpωω
a

q is a power of ω.

Proof. By uniformity, we look at the representation ωa “ t0, ωaLru | tωaRsu,
to find the following after several simplifications, the additivity of log courtesy
of what we (currently) know about exp (specifically that on the domain under
investigation that log is an inverse of exp, and thus ln is additive in the familiar
sense: logpωaq ` logpωbq “ logpωa`bq), and general cofinality arguments:

logpω
ωa
q “ tlogpωp0qq ` n, logpω

ωaLr
q, logpω

ωaRs
q ´ ω

ωaRs´ωa

n u | tlogpω
ωaRs

q ´ n, logpω
o
q ` ω

ωa´0
n, logpω

ωa´ωaLr
nqu

“ tn, r logpω
ωaL

q ` n, s logpω
ωaR

q ´ ω
ωaRs´ωa

n u | ts logpω
ωaR

q ´ n, ω
ωa
, r logpω

ωaL
q ` ω

ωa´ωaLr
n u

“ tn, r logpω
ωaL

q, s logpω
ωaR

q ´ ω
ωaRs´ωa

n u | ts logpω
ωaR

q, ω
ωa{n

, r logpω
ωaL

q ` ω
ωa´ωaLr

n u

“ tn, r logpω
ωaL

qu | ts logpω
ωaR

q, sω
ωa{n

u

That is, by cofinality, the final representation of logpωω
a
q exhibits a surreal number of the form ωx.

Moreover, we may define an ’inverse of g(x)’ as follows:

ω
hpxq

“ lnpω
ωx
q

such that
hpaq :“ t0, hpaLqu | thpaRq, ω

a
n u.
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Remark. We have that for all a P No, hpaq ą 0, and this is what shows that
the range of the g function consists of all the surreal numbers, whence we may
conclude that expx induces a map from the class of the positive surreal numbers
onto the class of all surreal numbers via the ln map.

Furthermore, the uniformity theorem is valid for g and g, as for x ď y, then
cx ď cy, where cx is such that x „ ωcx and similarly for cy.

1.7 log-atomic numbers
The following is a rapid overview of the log-atomic numbers and their properties,
see [?] for further details.

Definition. Let x be a positive infinite surreal number. x is log-atomic if for
all n P ω, logn x P Mą1, i.e the nth log iterate is an infinite monomial for all
natural numbers n. Let L denote the class of log-atomic numbers. It follows
that L ĂMą1.

Berarducci-Mantova introduced a weaker order relation than the one track-
ing Archimedean class:

Definition. For x, y P No, with x, y ą N,

1. x ĺL y if x ď expnpk lognpyqq for some n, k P N`;

2. x ăL y if x ď expnp
1
k lognpyqq for all n, k P N`;

3. x —L y if expnp1k lognpyqq ď x expnpk lognpyqq for some n, k P N`.

One can check that — is an equivalence relation. We say that the equivalence
class

rxs “ ty P No | y ą N^ y —L xu

is the level of x.

The following facts can be found in [?]:

Fact 7. 1. —L is an equivalence relation with x —L y if and only if there
exists an n P N such that lognpxq „ lognpyq.

2. Each level of x is a union of positive parts of archimedean classe and ĺL

induces a total order on the levels.

3. For all µ, λ P L, if µ ă λ, then µ ăL λ.

4. If x, y ą N, and x đ
´
y, then x —L y.

5. L is a class of representatives for —L with each λ P L the simplest number
in its level (with respect to ďs.

6. For all x P No, NR(x)=0$ if and only if x P R or x “ ˘λ˘1 for some
λ P L.
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1.7.1 λ numbers

Recalling ` as the Krull valuation defined above (and that the surreal numbers
form their own value group), we have the following consequence of some of the
facts above:

Proposition 4. For any x P No such that `pxq ‰ 0, there is some n P ω such
that `npxq “ `p¨ ¨ ¨ p`pxqq P L.

We can parametrize the levels of L with the so called λ numbers, which have
a genetic definition

Definition. For every x P No with canonical representatives xL, xR, define

λpxq :“ tk, expnpk lognpλpx
Lqqqu | texpnp

1

k
lognpλpx

Rqqqu

where n, k range over ω.

Question 1. What are the cardinal characteristics of logpαq for α P On.

Fact 8. 1. λ : No Ñ No is a well-defined monotonically increasing map
such that x ă y Ñ λpxq ăL λpyq.

2. For every x P No with x ą N, there is a unique y P No such that x —L λpyq
and λpyq ďs x, with λpyq the simplest representative of its level.

3. λpNoq “ L

1.7.2 TODO κ numbers pt 2o

Recalling that the κ numbers are intended to convey a notion of magnitude, [?]
define the following relation:

Definition. For any two x, y P No such that x, y ą N:

1. x ĺκ y if x ď expnpyq for some n P N;

2. x ăκ y if x ă lognpyq for all n P N;

3. x —κ y if lognpyq ď x ă expn y for some n P N.

Proposition 5. —κ is an equivalence relation.

Proposition 6. For all x, y P No, with x, y ą N, x —L y implies x —κ y.

We then properly define the κ numbers with respect to a genetic function
that identifies canonical representatives of each —κ equivalence class:

Definition. For all x P No,

κpxq :“ texpnp0q, expnpκpx
Lqqu | tlognpκpx

Rqqu

where n ranges over N.
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Remark. It is seen immediately that κp0q “ ωp0q and κp1q “ εp0q.

Fact 9. 1. x ďs y if and only if κpxq ďs κpyq.

2. For all x ą N, there exists κpyq ďs x such that κpyq —κ x, so each κpyq is
the simplest element in its respective equivalence class.

3. x ă y implies that κpxq ăκ κpyq.

4. lognpκpxqq is always of the form ωpωpyqq, and therefore each lognpκpxqq P
M.

5. κpNoq Ă L.

6. There are numbers in L which cannot be obtained from κpNoq by finitely
many applications of log and exp

Following this last fact, with the goal of generating L from κpNoq, Berarducci
and Mantova focus on the κp´αq numbers for α P On. Specifically

κp´αq “ N|tlognpκp´βq | n P N, β P αu

will be the simplest positive number less than lognpκp´βqq for all n P N and
β P α. From this, they find

Proposition 7. The sequence xκp´αq | α P Ony is a decreasing and coinitial
with the positive infinite numbers (i.e. every positive infinite number is greater
than some κp´αq, and from this we find L is coinitial in the positive infinite
numbers.

1.8 TODO BBM

Berarducci and Mantova provide a construction of a derivative BBM such that
gives pNo,`, ¨, exp, BBM q is a Hardy type series derivation. More precisely, they
equipped No with a derivation so that No is a Liouville closed H-field with BBM
surjective and sending infinitesimals to themselves.

We begin by defining surreal pre-derivatios DL and surreal derivations D in
such a way to make pNo, Dq an H-field, a generalized notion of a Hardy field.
Afterwards, we define the Berarducci-Mantova derivative, explore some imme-
diate facts and properties of the derivative, and . Afterwards, in an additional
subsection, we provide an overview of some transcendence results, applications
to the theory of transseries, and integration.

Definition. A (surreal) pre-derivation is a map DL : LÑ Rą0M such that

1. logpDLpλqq ´ logpDLpµqq ă maxtλ, µu.

2. DLpexppλqq “ exppλqDLpλq for all λ, µ P L.

A surreal derivation is a function D : NoÑ No with the following prop-
erties:
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1. (Leibniz rule): D(xy)=D(x)+D(y)

2. (strong additivity): D(
ř

iP Ixi)=
ř

iP ID(xi)$ for all summable sequences
xxi | i P Iy

3. (compatibility): Dpexppxqq “ exppxqDpxq

4. (real constant field): kerpDq “ R

5. (H-field): if x ą N , then Dpxq ą 0

The following facts are true for all surreal derivations D:

Fact 10. 1. if 1 ffi x ą y, then Dpxq ą Dpyq;

2. if 1 ffi x „ y, then Dpxq „ Dpyq;

3. if 1 ffi x — y, then D(x)— D(y)$

4. For x, y P No, if x, y, x´ y are all positive infinite, then

logpDpxqq ´ logpDpyqq ă x´ y ĺ maxtx, yu

Berarducci-Mantova define their derivation BBM first by defining one on
L Ñ Noą0, and then extending the definition to all of No by means of path-
derivatives.

Definition. For λ P L, with α ranging over the ordinals, let

BL :“ exp

¨

˝´
ÿ

λĺκκp´αq

8
ÿ

i“1

logipκp´αqq `
8
ÿ

i“1

logipλq

˛

‚

Since xlogi λy is a strictly decreasing sequence of monomials, it is summable.
Similarly, xκp´αqy is decreasing, so xlogipκp´αqq will also be summable. Fur-
thermore, if λ “ κp´αq for some ordinal α, then the terms logipλq cancel out,
and we find that

BLpλq “ exp

˜

ÿ

βăα

8
ÿ

i“1

logipκp´βqq

¸

with BLpωp0qq “ BLpκp0qq “ 1.

We now define paths and path derivatives, before we define BBM with respect
to the pre-derivative BL.

Definition. A path is an sequence P : N Ñ RˆM such that for every n P N,
P pn` 1q is term of `pP pnqq.

Ppxq is the set of paths such that P p0q is a term of x.
Given a path P , the path derivative BpP q P RM is defined as follows:

1. if for some n P N such that P pnq P L, set BpP q “
ś

iăk

P piq ¨ BLpP pkqq;
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2. if for all n P N, P pnq R L, set BpP q “ 0.

We define the Berarducci-Mantova derivative B : NoÑ No by

Bpxq :“
ÿ

PPPpxq

BpP q

Given x P NozR, the dominant path of x is the path Q P Ppxq such that
Qp0q is the term of maximum non-zero ` value of x and Qpi` 1q is the leading
term of `pQpiqq for all i P N.

We now state many facts about the pre-derivative, paths, and the Berarducci-
Mantova derivative:

Fact 11. 1. For all λ, µ P L, logpBLpλqq ´ logpBLpµqq ă maxtλ, µu

2. For all λ P L, BLpexppλqq “ exppλqBLpλq

3. If P is a path, then 1 ă P pi` 1q ĺ logp|P piq|q ă P piq for all i ą 0.

4. If t ĺ u are both monomial terms, and v is a term of `ptq but not `puq,
then vn ă u

t for all n P N.

5. If P,Q are two paths such that BpP q, BpQq ‰ 0, then if P p0q ĺ Qp0q and

P p1qn ă
Qp0q

P p0q
for all n P N, then BpP q ă BpQq.

6. Extending Fact 5, if there exists an n such that for all m ď n, P pmq ĺ

Qpmq, and P pn` 1qk ă
Qpnq

P pnq
for all k P N, then BpP q ă BpQq.

7. If P,Q are two paths with non-zero path derivative and there exists an
n P N such that for all m ď n, P pmq ĺ Qpmq and P pn` 1q is not a term
of `pQpnqq, then BpP q ă BpQq.

8. Given P P Ppxq, NRpP p0qq ď NRpxq, and if NRpP p0qq “ NRpxq, then
the minimum m of Spxq is such that P p0q “ rm for some r P Rˆ.

9. Similarly, for all n P N, NRpP pn`1qq ď NRpP pnqq and if equality holds,
then there is a minimum m in Sp`pP pnqqq such that P pn ` 1q “ rm for
some r P Rˆ.

10. For all x P No, there is at most one path P P Ppxq such that NRpP pnqq “
NRpxq for all n P N.

11. If x P NozR with dominant path Q, then BpQq ‰ 0 and BpQq is the leading
term of Bpxq.

12. ker B “ R.

13. If x ą N, then Bpxq ą 0
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14. B is strongly linear, and therefore strongly additive.

15. For all γ P J, B(exp(γ))=exp(γ)B(γ)$.

16. For all x, y P No, Bpxyq “ xBpyq ` yBpxq.

17. For all x P No, Bpexppxqq “ exppxqBpxq.

Using the facts above, we summarize the proof of summability from [?]

Theorem 26. For all x P No, the family xBpP q | P P Ppxqy is summable.

Proof. For any x P No, it suffices to show that there is no sequence of distinct
paths xPiyiPN in Ppxq such that we have an infinite ascending chain

BP0 ĺ BP1 ĺ BP2 ĺ ¨ ¨ ¨ ,

since BpP q P RM for all Ppxq.
Towards a contradiction, suppose that there exists such a sequence and let

α “ NRpxq. Since the paths are distinct, there must be a minimum m P N such
that Pipmq ‰ Pjpmq for some i, j P N. We proceed by double induction, first on
α, and then on m.

Let r exppγq be the maximum ` value from tPjp0q | j P Nu.
By fact 11.8, if NRpγq “ α, then r exppγq is also the term of minimum `

value, whence Pjp0q “ P0p0q for all j. Thus m ą 0.
If NRpγq ă α, we extract a subsequence so that

r exppγq “ P0p0q ľ P1p0q ľ P2p0q ľ ¨ ¨ ¨ .

If Pjp1q is not a term of γ “ `pP0p0qq for some j P N, but Fact 11.7, we find
that BpPjq ă BpP0q, which is a contradiction.

Therefore, Pjp1q must be a term of γ for all j P N.
Now consider paths Qj defined by Qjpnq “ Pjpn ` 1q, for all n P N. Let r

be the minimum integer such that Qjprq ‰ Qkprq for some j, k.
In the case of NRpγq “ α, we have that r “ m ´ 1, and that for all j P N,

we have Qj P Ppxq.
Thus, we find that BpPjq “ Pjp0q ¨ BpQjq, and that we have a descending

sequence
P0p0q ľ P1p0q ľ P2p0q ľ ¨ ¨ ¨ ,

from which we derive an ascending sequence

BQ0 ĺ BQ1 ĺ BQ2 ĺ ¨ ¨ ¨ .

Now, we either have that (1) NR(γ)=α$ and r ă m; or we have (2) NRpγq ă α,
and both of these contradict the induction hypothesis that no suchh sequence
exists in γ.

Thus xBP | P P Ppxqy is summable.

Theorem 27. BBM extends BL.
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Proof. By facts 11.12 to 11.17, we find that BBM is a surreal derivation. By
restricting BBM to L, BBM æ L takes values in the subfield RxxRyy of No. Since
we compute BBM as finite products of infinite sums, we see that BpRxxRyyq Ă
RxxRyy, from which BBM æ LxxLyy will induce an H-field structure on RxxLyy.

Corollary 2. Let d : LÑ Noą0 be a map such that:

1. for all λ, µ P L, logpdpλqq ´ logpDpµqq ă maxtλ, µu;

2. for all λpLq, dpexppλqq “ exppλqdpλq;

3. dpLq Ă RˆM.

Then d extends to a surreal derivation D on No.

1.8.1 TODO Transcendence, Transseries, and Integration

1. Transcendence Recall that if V is a Q vector space, and W Ă V , then
H Ă V is a Qlinearly independent modulo W if its projection to
V {W is Q linearly independent.

Using Ax’s theorem, and a general result regarding all models of Rexp, we
can show that the definable closure operation coincides with exponential-
algebraic closure. From this, the following Schaunel type statements will
hold modulo the exponential-algebraic closure of the empty-set.

Theorem 28. For any R |ù Rexp, if x1, . . . , xn P R are Q linearly inde-
pendent modulo dclppqHq, and k is the exponential transcendence degree
of x1, . . . , xn over dclppqHq, then

tr.degkerpDqpx1, . . . , xn, Epx1q, . . . , Epxnqq ě n` k

Proofs for the above theorem can be found in 1001r?, ?s. This result can
be restated for differential fields as Ax’s theorem [?]:

Theorem 29. Suppose that pK,Dq is a differential field, and x1, . . . , xn, y1, . . . , yn

are such that Dpxiq “
Dpyiq

yi
for all i ď n. Furthermore, suppose that all

xi are Q linearly independent modul kerpDq. Then

tr.degkerpDqpx1, . . . , xn, y1, . . . , ynq ě n` 1

Taking K “ No and D “ BBM , and yi “ exppxiq leads to the following
corollary

Corollary 3. If x1, . . . , xn P No are Q linearly independent modulo R,
then

tr.degRpx1, . . . , xn, exppx1q, . . . , exppxnqq gen` 1
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2. Transseries One important result from [?] was to disprove a conjecture
of [?], namely, that No “ RxxRyy. This result relates to the study of
fields of transseries, and relies on the well-foundedness of the partial order
relation đ

´
. Whereas RxxLyy is a field containing RpLq, and closed under

infinite sums, exponentiation, and logarithm, it is nonetheless a proper
subfield of No, which maintains a transseries structure.

Before elaborating further on this result, we recall Schmelling’s notion of
a transseries.

Definition. Let F be an ordered field, and exp : pF,`q Ñ pFˆ,ˆq be
a monotonic increasing group homomorphism such that exppxq ě 1 ` x
for all x P F and Impexpq “ Fą0. Further, let Γ be an ordered group,
and B Ă F ppΓqq an additive group containing F ppΓď0qq, with a monotonic
homomorphism exp : pB,`q Ñ pF ppΓqqˆ,ˆq which extends exp : F Ñ Fˆ

to B.

We say that pF ppΓqq, expq is a field of transseries if it satisfies the fol-
lowing four axioms: T1. Impexpq “ F ppΓqqą0; T2. Γ Ď exppF ppΓą0qqq;

T3. exppxq “
8
ř

n“1

xn

n!
for all x P F ppΓă0qq; T4. for all sequences of mono-

mials mi P Γ, with i P N, such that for ri`1 P F
ˆ and for γi`1, δi`1 P

F ppΓą0qq,
mi “ exppγi`1 ` ri`1mi`1 ` δi`1q,

with γi`1 ` ri`1mi`1 ` δi`1 in standard form, then there is a k P N suh
that ri`1 “ ˘1 and δi`1 “ 0 for i ě k.

Taking F “ R and Γ “ M “ exppJqq, and B “ No, we find that No “
RppMqq equipped with Kruskal’s exponential function will be a model of
1-3.

[?] argued that the well-foundedness of đ
´
is equivalent to No satisfying

axiom T4. While the analysis of đ
´

in [?] is solely with respect to the
surreal numbers and notions of paths therein, paths and đ

´
can be extended

to general transseries structures as follows:

Definition. For a path P : NÑ FˆppΓą0qq, write

P piq :“ ri exppγi`1 ` P pi` 1q ` δi`1q

where γi`1, δi`1 P Γą0 and γi`1 ` P pi` 1q ` δi`1 are in standard form.

We define for all x P F ppΓqq the notion of path space Ppxq as before.

A path P satisfies T4 if there exists a k P N such that ri`1 “ ˘1 and
δi`1 “ 0 for all i ě k. Otherwise, P refutes T4.

x P F ppΓqq satisfies T4 if for all paths in Ppxq satisfy T4. Otherwise, x
refutes T4.
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Proposition 8. Let x P No, and P P Ppxq. If NRpP piqq “ NRpxq for
all i P N then P satisfies T4.

Theorem 30. Axiom T4 holds in No, with F “ R and Γ “ M, whence
No is a transseries in the sense of Schmelling.

The crucial point yet to be mentioned to understand the result at the top
of this subsubsection is that axiom T4 is a weaker form of an axiom ELT4
introduced in [?].

Definition. Let F Ď No. F is truncation closed if for every f P F, and
m PM, we have f æ m P F.
A truncation closed subfield F of No closed under logarithm satisfies ELT4
if and only if for all sequences of monomials mi PMXF, with i P N, such
that

mi “ exppγi`1 ` ri`1mi`1 ` δi`1

where ri`1 P Rˆ; γi`1, δi`1 P J and γi`1 ` ri`1mi`1 ` δi`1 is in standard
form, there is a k P N such that ri`1 “ 1 and γi`1 “ δi`1 “ 0 for all
i ě k.

[?] remarks that ELT4 implies that the sequence pmiq eventually satisfies
mi P L, and that in terms of paths, a truncation closed subfield F of No
closed under log satisfies ELT4 if and only if for every x P F, and every
path Ppxq, there exists a k such that P pk ` 1q P L. As a consequence,
they prove the following proposition:

Proposition 9. RxxLyy is the largest truncation closed subfield of No
closed under log and satisfying ELT4.

After proving this result, [?] provide a proof to show that RxxLyy is a
proper subclass of No.

3. TODO Integration

2 TODO Forcing
The notion of forcing was originally developed by Paul Cohen to construct a
model of ZFC in which the Continuum Hypothesis did not hold. His approach
took a transitive model M of ZFC and adjoined a generic set G such that
M rGs |ù  CH.

Throughout, we let P “ pP,ăq denote a non-empty partially ordered set,
and call pP,ăq a forcing notion whose elements are forcing conditions.
Conditions p and q are compatible if there exists an r ď p, q, and otherwise,
they are incompatible, which will be denoted by pKq. A set W Ă P is an
antichain if its elements are pairwise incompatible. A set D Ă P is dense if for
every p P P , there is some q P D such that q ď p.
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Given a forcing notion P over some ground model M, let G Ă P denote
a generic filter over P. We then describe M rGs as a generic extension of M.
Each element in M rGs has a name in M , and associated to P is a forcing
language, and a forcing relation ,. Given a generic set G, every constant of
the forcing language is then interpreted as a constant in the generic extension
M rGs.

The following facts can be found in [?] as Corollary 14.12 and Theorem 14.10
respectively.

Fact 12. For every partially ordered set P, there is a complete Boolean algebra
B “ BpP q and a mapping e : P Ñ B`, where pB`,ăq is a separative partial
order (i.e. for all p, q P B`, if p ­ď q, then there exists an r ď p incompatible
with q), such that:

1. if p ď q, then eppq ď epqq;

2. p and q are compatible if and only if eppq ¨ epqq ‰ 0;

3. teppq|p P P u is dense in B.

B will be unique up to isomorphism.

Fact 13. Let P be a separative partially ordered set. Then there is a complete
algebra B such that:

1. P Ă B` and ă agree with the partial ordering of B

2. P is dense in B.

The algebra B is unique up to isomorphism.

These two facts raise an interesting question given that No is a proper class.

Question 2. Is there a complete (class) algebra B such that No Ă B` and ăos
agrees with the parital ordering of B, and No is dense in B?

Answering this question will require a move into second order logic that can
properly handle classes, and so we will put this question aside for now, as we
continue to review the rudimentary elements of forcing.

Definition. We inductively define names as follows:
Let M |ù ZFC be a transitive model, let P PM be a forcing notion. Then a

P-name σ in M contains elements of the form xτ, py where τ is a P-name and
p P P.

Given a P-name σ in M, and a P-generic filter over M, let

σG :“ tτG | Dp P G, xτ, py P σ

and
M rGs :“ tσG | σ PM

P

where MP is the set of P-names.
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The following theorems have detailed proofs found in [?].

Theorem 31. Let M be a transitive model of ZFC, and let P be a forcing
notion in M. If G Ă P is a generic filter over P, then there exists a transitive
model M rGs such that:

1. M rGs |ù ZFC;

2. M ĂM rGs and G PM rGs;

3. OnMrGs “ OnM ;

4. if N is a transitive model of ZF such that M Ă N and G P N , then
M rGs Ă N .

The forcing relation , generalizes model-theoretic satisfaction |ù in the forc-
ing language.

Theorem 32. Let P be a forcing notion in the ground model of M , and let MP

be the class in M of all names. Then

1. (a) If p , ϕ and q ď p, then q , ϕ;

(b) No p forces ϕ and  ϕ;

(c) For all p there is a q ď p such that q}ϕ (q decides ϕq, i.e.q, ϕ or
q ,  ϕ.

2. (a) p ,  ϕ ðñ  Dq ď pq , ϕ

(b) p , ϕ^ ψ ðñ p , ϕ and p , ψ.

(c) p , @xϕ ðñ p , ϕp 9aq for every 9a PMP .

(d) p , ϕ_ ψ ðñ @q ď pDr ď qpr , ϕ or r , ψq

(e) p , Dxϕ ðñ @q ď pDr ď qD 9a PMP pr , ϕp 9aqq.

3. If p , Dxϕ, then for some 9a PMP , p , ϕp 9aq.

Example 3 (Cohen Forcing). Let P “ p2ăω,ăq with the ordering q ă p if and
only if p Ă q. Let M be a ground model containing P, and let G be Pgeneric
filter over M.

Further, set f “
Ť

G. Since G is a filter, f will be a function whose domain
is ω. Furthermore, we can regard f as a characteristic function on some subset
A Ă ω. This can be seen as follows:

For every n P ω, let Dn “ tp P 2ăω | n P Dompu. It is immediate that Dn is
dense in P, and therefore it will meet G for every n P ω. Thus Domf “ ω.

We note that f R M , and as a characteristic function of A, A R M as well.
For every Boolean function g PM , set Dg “ tp P 2ăω | p Ć gu. It is immediate
that Dg is also dense, so Dg will meet G, and thus f ‰ g as well.

The sets A Ă ω obtained above are known as Cohen generic reals. This
leads to Cohen’s famous theorem
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Theorem 33. There is a generic extension V rGs such that 2ℵ0 ą ℵ1.

Proof. Let P be the set of finite Boolean-valued partial functions defined on a
subset of ω2 ˆ ω, such that p ă q if q Ă p.

If G is a generic set of conditions, set f “
Ť

G. Since G is a filter, f is a
function.

We check that Domf “ ω2ˆω. Since the sets Dα,n “ tp P P | pα, nq P Dompu
will be dense in P , G will meet each Dα,nu. Thus pα, nq P ω2 ˆ ω for each
pα, nq P ω2 ˆ ω.

Now define fα : ωÑt0, 1u for each α P ω2 by:

fαpnq “ fpα, nq

For α ‰ β, fα ‰ fβ since D “ tp P P | n P ωpppα, nq ‰ ppβ, nqqu is dense
and therefore GXD ‰ H.

Thus in V rGs, there is a monic map ω2 Ñ 2ω.
The remaining proof that |ωV2 | “ ℵV2 rGs (and that this forcing notion pre-

serves cardinals) can be found in [?] Chapter 14.

Each fα above is a characteristic function of a Cohen generic real, and so P
will adjoin ℵ2 Cohen generic reals to the ground model.

3 TODO Some ordinal analysis

4 TODO What Next
Given the sign sequence lemma, and the understanding that each surreal number
can be understood as a predicate of a given ordinal in Cantor normal form, and
that forcing notions add no new ordinals, the behavior of the surreal numbers
under various forcing notions warrants investigation.

It is worth noting that immediately, the field operations inductively defined
over the surreals do not correspond nicely to boolean operations on the subsets
of ordinals.

UP NEXT

• The surreals in Godel’s constructible universe L.

• Ordinal Analysis for algebraic structures of interest (RCF, DRing, analytic
field, etc);

• Classifying maps j : NoÑ No with respect to elementary j : V Ñ V rGs;

• Friedman’s Inner Model Hypothesis (does every first order sentence ϕ
holding in an inner model of a universe V ˚ Ě V hold in some inner
model of V ) - inner models of a model of ZF(C)$ are transitive submodels
containing all of the ordinals (and therefore each inner model contains a
copy of the surreals). This is inspired in part by the Inner model reflection
principle that shows whenever a first order formula ϕpaq holds in V, then
it holds in some inner model W Ĺ V .
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• Iterated forcings using subfields of the surreal numbers as the underlying
posets.

• Studying generalizations of descriptive set theory to infinitary logics us-
ing singular, weakly, measurable, and supercompact cardinals κ and the
subrings Nopκq.
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