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This is a fairly broad overview of the surreal numbers, some interesting
inductive constructions which allow us to regard them as universal domains for
various power series fields equipped with an exponential function, as well as of
logarithmic-exponential series in the sense of Kulhmann [?] and the transseries
in the sense of Schmelling [?]. Furthermore, I provide some broad overview
of the notion of set theoretic forcing. In the process, I hope to provide the
groundwork of results necessary to perform general ordinal analysis and relate
the proofs of consistency strength to constructions one can build with respect
to the surreal numbers

e Eventually I will include a brief overview of the ordinal analysis to be
done.

1 Surreal Numbers

This section is divided into several subsections. The goal is to provide a rel-
atively concise overview of the following: Gonshor’s monograph [?], wherein
which he showed that the surreal numbers form a real closed field with an ex-
ponential and logarithmic map that agree with the ordinary real valued maps;
work by Kuhlmann and Matusinski on exponential-logarithmic classes and the
x numbers [?]; the recent work of Berarducci and Mantova [?], which defined
a Hardy-type derivation map and established that the surreal numbers form
a field of exponential-logarithmic transseries. Throughout this review, we will
build the following descending chain of proper classes of surreal numbers which
are used in exploring the model theoretic properties of the surreal numbers:
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The aim going forward with these results will be to study both the model
theory of the surreal numbers and use those results to study various large car-
dinal hypothesis and notions of forcing.
We begin this section by introducing the surreal numbers, some fundamental

existence and cofinality results essential for proving various uniformity theorems,



several simplicity results, the construction of the reals, and some rudimentary
analysis on the surreal numbers. The next subsection provides definitions for
the field operations. After providing the definitions for the field operations, we
introduce the definitions for the w and e numbers, and provide a brief summary
of the x numbers described in [?]. We then provide a definition for the exp map.
Once we have a defintion of exp, we then give an overview and relevant results
regarding two normals which can be put on the surreal numbers, along with
the sign sequence lemma, which is yet another canonical name for the surreal
numbers (precisely, the sign sequence names the branch of 2°% which names a
surreal number). We then explore the log map in some detail, before describing
the log-atomic numbers and finishing our exposition on the x numbers. Finally,
we provide an overview on the construction of the dgjys derivative.

1.1 Numbers and Games

Surreal numbers, denoted by NO, relate the theory of transfinite numbers
with mathematical games. Aside from their popular origins in Donald Knuth’s
Surreal Numbers, they were invented as a way to attain a theory of the real
numbers by defining them as strengths of positions of certain games. Specifi-
cally, the surreal numbers are a class of games GAME defined with respect to a
transfinitely constructed sets of numbers NO given by the following construction
rules:

e If L, R are two sets of NO such that Yz € LVy € R.x < y, then there is
anumber a = L | R = {zl} | {z®} (with 2 and z¥ denoting typical
elements of the (canonical) sets defining x);

e We inductively define the relation < by y < z := —3(2f* < y) A —Iyl(z <
y")
e A game consists of two sets, F, G consisting of surreal numbers. We say

IT wins if F' < G. Otherwise, the games are said to be incomparable,
which is denoted by F||G.

Alternatively, the surreal numbers can be defined as follows:

Definition. a is a surreal number if it is a function from an initial segment
of the ordinals ON (including from the empty set) into the set 2 = {—, +}.

We define a linear ordering < on the surreal numbers as follows: if « is the
least ordinal such that a(a) # b(a), then a < b := (a(a) = =) v (b(a) = +),
with the convention that — < 0 < +.

The common initial segment of two surreal numbers a and b is the number
¢ whose length is the least a such that a(a) # b(a) and for all 8 € «a, ¢(B) =
a(B) = b(B). We denote that c is an initial segment of a by c = a.

For two sets F < G, we denote by F|G the unique ¢ of minimal length such
that FF < ¢ < G.



As functions from ordinals « to 2, the surreal numbers form a a well-founded
partial order <5 on NO called the simplicity relation, with a <g b if a = b as
a function.

Example 1. Here’s a guiding example for canonical sets:
w—1:={n}|{w}

where n ranges over w with n = (+,) understood to be a sequence of n plusses
and w = (+,) s a sequence of w plusses.

Definition. Given two sets A < B of surreal numbers, we define the associ-
ated convex class

(A;B):={yeNo | A<y< B}

By construction, every (A; B) has a minimal representative with respect to
<s. Moreover, the canonical representation of a surreal number a are the sets
F < G for which all members of F,G are simpler than a, and for which a is the
simplest element in (F; G).

Gonshor establishes the following theorems [?]:

Theorem 1. (Fundamental Existence Theorem) Let F,G denote two sets of
surreal numbers such that (a € F Abe G) = a <b. Then there exists a unique
¢ of minimal length such that a € F = a < ¢ and b€ G = ¢ < b. Furthermore,
c is an initial segment of all surreal numbers d such that F <d < G.

Every cut has a well-defined element as a consequence of this Fundamental
existence theorem. The following theorems are essential to proving uniformity
theorems for various inductively defined operations; these theorems allow for
various substitutions between canonical sets, and cofinal sets that are more
appropriate for describing the operation at hand.

Theorem 2. (Representation Theorem) Given two sets of numbers F < G, a
pair (F',G") is cofinal in (F,G) if

Vae Fibe F'(a<b) A (Vae GIbe G').(b< a)

Theorem 3. (Main Cofinality Theorem) If a = F|G, and F' < a < G', and
(F',G") is cofinal in (F,G), then a = F'|G’.

Corollary 1. Suppose (F,G) and (F',G") are mutually cofinal in one another.
Then F|G = F'|G'.

Theorem 4. Let a € No. Suppose that F' := {b | b < a Ab = a} and let
G :={bla<babca}. Thena=F'|G".

Theorem 5. (The Inverse Cofinality Theorem) Let a = {a’} | {a®} be the
canonical representation of a and let F,G be such that a = F|G. Then (F',G")
is cofinal in ({al'},{aft}) = AL|AR.



1.1.1 Simplicity relation and binary trees

Surreal number can be understood as a lexicographically ordered tree with a
partial order relation on denoted by <, for branch predecessors. Alternatively,
we may describe This relationship has been extensively studied by Ehrlich, et.
al [?,7?] as forming a simplicity hierarchy (or s-hierarchy).

Definition. A representation of a = F|G is simple if a <, y implies F <y <
G

‘We now recall some definitions of trees:

Definition. A tree (T, <) is a partially ordered class such that for each x € T,
the predecessors,

prr(x) :={yeT |y <s z}

form a set well-ordered by <.

The branches of a tree form a mazimal subclass of mazimal subclasses or-
dered by <s.

x,y € T are incomparable if x # yrnx €5 y Any s . We denote
incomparability by xLy.

The tree-rank of x € T is denoted by pr(x), and is defined to be the ordinal
corresponding to the well-ordering of the set {prr(x), <s).

The « level of a tree Ty, :={x € T | pr(x) = a}. A root of T is a member
of the zeroth level.

An immediate successor of x is any y such that © <g y and pr(y) =
pr(z) + 1. For any chain of (xq)aep in T, y is a successor of the chain if
To <s Yy and

pr(y) = inf{y € ON | pr(z) = 7}

A tree T is binary if each member of T has at most two immediate succes-
sors, and every chain in T of limit length has at most one immediate successor.

A tree T is lexicographically ordered if for all x,y x 1y if and only if there
isz<sx,yandr <z<yory<z<uz.

A tree T is full if every member of T has immediaate successors, and every
chain of T of limit length has an imediate successor. Consequently, the universe
of a full tree T forms a proper class.

A lexicographically ordered tree T is complete if for any two subsets L, R
of T such that L < R, there is an x € T such that L < x < R.

Theorem 6. Every (T, <,<s) is a lexicographically ordered binary tree is iso-
morphic to an initial subtree of (NO, <, <g). In particular, the surreal numbers
are a lexicographically ordered binary tree.

The following are some elementary facts of <s which can be found in [?,7,7]:
Fact 1. Let a,b,c,z,y € NO:

1 ifc<sx <;y, thenc<z < c<y



2. ifa= F|G, and F U G only contain x < a, then F|G is simple.

8. A lexicographically ordered binary tree is complete if and only if it is full
if and only if it is isomorphic to (NO, <, <y).

Proposition 1. (No,<?) is a separative partial order under reverse inclusion.

Proof. Tt is immediate that NO is partially ordered by <, and so NO will also
be partially ordered by the opposite <¢, with top element 0.

Now suppose a,b € NO have tree rank «, 8 respectively and are such that
a £2b. Then b & a, and so either a = b or a.lb.

If @ = b, then there is some z € {—, +} such that a ~ 2 = b. Let y = —x
(i.e. =— =+ and —+ = —), and consider ¢ = a ~ y. Then a = ¢, hence ¢ <% a
and c1b as desired. If alb, then we may take a = c. O

1.1.2 Real numbers

While it can be readily seen that the surreal numbers contain the dyadic ratio-
nals, D, we use the following definition to define the real subset of the surreal
numbers.

Definition. A real number is a surreal number a which is either of length
< w, such that if Ih(a) = w, then

VnodniIng[ny = no A ne =np A alng) =+ A a(ng) = —|

It is worth noting that the definition of real numbers above cannot dis-
tinguish between rational and irrational real numbers, nor can we distinguish
between rational and irrational elements based on the canonical representation
of a surreal number. To check that the set of reals forms a field, one must check
the closure properties under the operations defined below in the next subsection.

The following list of facts can be found in [?] Chapter 4 Section C.

Fact 2. 1. Let F,G be non-empty sets of dyadic fractions such that F < G,
F has no mazimum and G has no minimum. Then F|G is a real number.

2. Ifa = F|G,
Ve e FlaeDoody(lyz +r Aye F),

and
Vee GIreDspdy(ly <z —r Aryeq),

and F' <a < &, and
Vre Dsogdze F'Aye G'(y—x <),
then a = F'|G".

8. There are an infinite number of dyadic rationals between any two distinct
real a and b.



4. If a = F|G is the canonical representation of a non-dyadic real number,
then for all positive dyadic rationals r, there exist b € F,c € G such that
c—b<r

Theorem 7. The subset of reals R < NO has the lub property.

Proof. While any set which has no maximum in the surreal numbers will have
no least upper bound in the class of the surreal numbers as a consequence of the
existence of gaps (or more simply, the infinitesimal numbers), we can prove that
every bounded non-empty set of real numbers has a least upper bound within
the set of reals using the facts above.

Let H be a non-empty set of real numbers bounded above, and let G be
the set of all dyadic rationals which are upper bounds of H, and let F' be the
complement of G in D. Since F,G are non-empty, the facts above, F' has no
maximum, and if G had a minimum b, then b would be a least upper bound to
H, and thus we’re done.

So, further suppose that G has no minimum. Then r = F|G will be a real
number. We check that r = [ubH.

First, we note that r is an upper bound to H, as otherwise, there is some
a € H such that r < a, and then there is some dyadic rational d such that
r<d<a. But sinced < a€ H, de F, and therefore since r < d, we contradict
that F' < r.

Finally, towards another contradiction, suppose that s is an upperbound to
H such that s < r. Let s < d < r for some d € D. This d is also an upper bound
to H, and hence d € G. But d < r < G. Contradiction.

Thus we have that r = F|G is a real number, and since H was arbitrary, we
have established that the R has the least upper bound property. O

Notation. By the theorem above, we may denote the subfield R < NO of reals
by the ordinary boldface R.
1.1.3 Elementary Surreal Analysis: Gaps

While surreal numbers are definable with respect to cuts defined with respect
to sets, one can form a cut of sorts with respect to classes, known as a gap, for
which there is no surreal number that can satisfy the gap (as a consequence,
the surreal numbers form a totally disconnected space). More precisely:

Definition.

We classify gaps into two types:

1.2 Field Operations

Definition. We define the ring operations +,- as follows
a+b:={a" +ba+b"} | {a® +b,a+ b7}

a-b:= {a®-b+a-bt—al-b* a®-b+a-bB—af b} | {al b+a-bB—al bR, af'-bta-bl —alt-bl}



Theorem 8. The surreal numbers form a commutative ordered ring with unity.
Proof. A full proof of this can be found in Chapter 2 of [?]. O

Definition. If a > 0, then the multiplicative inverse of a is defined as follows:
Let a = AV|AR. Define {ay,as,...a,) for every finite sequence where a; €

AL U AB\(0}, and let 0 = () and {ay,...anydega,1 = a1, ., an,ani1)-
For arbitrary b, define bdega; to be the unique solution to

(@—a)b+amw =1

By induction, each a; will be an initial segment of a, and will have an inverse,
with uniqueness following.

Then for a € NO*, a=! = F|G where F = {{ay,...,a,) | the number of a; €
AL is even} and G = {{a1,...,a,) | the number of a; € A* is odd}

One can find in [?] the proof of the following:

Theorem 9. NO is a real closed field

1.3 w and generalized ¢ numbers

Two interesting maps related to the study of large ordinals and cardinals are
the w and € maps.

Definition. Let a ~ b if and only if there exists an integer n such that na = b A
nb = a. This equivalence relation classifies numbers by their order of magnitude.
Let a » b if and only if for all integers n (nb < a), and a < b if and only if
b>» a. It follows that each ~ equivalence class is conver.
We now inductively define w: NO — NO=q as follows:

w® = w(a) := {0,rw(al) | r e Rug} | {sw(a®) | s € Rug}

The following results from [?] warrant statement and proofs, as they will
establish the properties to show that the value group of the surreal numbers are
the surreals themselves.

Theorem 10. For every a € NO~ there exists an unique x of minimal length
such that © ~ a.

Proof. By well-ordering, there exists an x of minimal length such that = ~ a.
If there existed a distinct y ~  ~ a, of minimal length, then with z = x,y, it
would follow by the convexity of ~ classes that z ~ a. Since lh(z) < lh(z), we
have a contradition of the minimality of x. O

Theorem 11. w(a) is defined for all a € NO, w(a) > 0, and a < b = w(a) «
w(b).



Proof. As is standard in proofs on NO, we prove this by induction on the length
of a.

Since a® < a®, by our inductive hypothesis, w(al) « w(a’?). Hence for all
positive reals 7, s, we have 0 < rw(a’) < sw(a?). Hence w(a) will be defined,
and since 0 is a lower element in its definition, 0 < w(a).

Suppose a < b and ¢ is a common initial segment. Then if ¢ = a or ¢ = b,
we're done. Otherewise, we have w(a) « w(c) « w(d). O

L

Theorem 12. An element a = W’ if and only if a is the element of minimal
length in its ~ equivalence class.

Proof. Unfolding the definition, we have w® = w(b) = {0,7w(b")} | {sw(bF)}. If
x ~ w(b), then rw(b?) < r < sw(bf) since r, s are arbitrary positive reals. Thus
w(b) must be an initial segment of z, so we have [h(w(b)) < lh(z).

Conversely, we must show every positive element is equivalent to an element
of the form w(b). Given the inequality, b < ¢ = w(b) < w(c), if an element
exists, it must be unique.

We proceed by induction. Set a = A¥|Af. We have 0 € AL. Every element
in AL U AR is equivalent to an element of the form w(b) by our induction
hypothesis.

Now set F' = {y | 3x € AX(z ~ w(y))} and G = {y | Iz € A(z ~ w(y))}.
Suppose that FF n G = (.

We claim that F' < G. If not, then there is > y such that x € F and y € G.
Then w(z) ~ a® and $w(y)~ al, hence 7 > y = w(z) » w(y) = a* » aff = L.
Thus F < G and there is a z = F|G.

Let w(F') be the complete set of representatives for the equivalence classes
containing the elements of AX\{0}, and similarly for w(G) with respect to A%.

We now evaluate the following three cases:

Case 1 rw(x) = a for some positive real r and some z € F. Let a’ such
that a ~ w(z). Then a* < a < rw(z). But we have a” ~ w(z) ~ rw(z), and
hence a ~ w(x). Case 2 rw(x) < a for some positive real r and some = € G.
Let af satisfy a® ~ w(x). Then rw(z) < a < a®, but rw(z) ~ w(x) ~ aff,
and hence a ~ w(x). Case 3 If neither case 1 nor case 2 is satisfied, then
rw(F) < a < sw(G). Let al # 0. Then there exists some x € F such that

a® ~ w(z), and for some real r, rw(x) > a. Similarly for a® we have some real

s such that sw(z) < af’.
Since a = AL| AR, the cofinality condition is satisfied for {0, rw(F)} | {swG}.
Hence a = {0,rw(F)} | {swG} = w(z).

The theorem now follows since w(b) has the minimal length property. O

Looking ahead, with w® = w(a) the representative of minimal length in its
respective Archimedean equivalence class, we can put each surreal number
into a Conway normal form (see below), as well as put a natural valuation on
each surreal number which sends each a = > w®r; to aop.

Definition. Let wN° = w”No = 0 denote the group of generalized mono-
mials.
It is immediate by construction that wN° ¢ No.



1.3.1 cenumbers

Definition. We inductively define € :—~q as follows: Let wi(a) = w(a) and
Wn+1 = w(wn(a))‘
Let a = AF| AR be given its canonical representation. Let

e(a) = {wa (1), wal(a®) + 11} | {wale(@®) — 11}
where n ranges over positive integers.

We note that £(0) = {w, (1)} | {} = lub{w, (1)} = ¢, the first ordinary epsilon
number. It is worth remarking that Gentzen showed that transfinite induction
up to €(0) suffices to prove the consistency of PA [?]. It warrants investigation
how ordinal analysis can relate to various inductively defined ordinal operations
on the surreal numbers. The following proof can be found on page 122 of [?].

Theorem 13. 1. ¢(a) is defined for all a € NO and w(e(a)) = €(a).

2. e(a) is a strictly increasing function and €(a) > wy (1) for all a and positive
mtegers n.

Definition. Let Noi(lJ denote the class of positive valued Archimedean equiva-
lences classes whose elements > R.

We define w*"" to be the chain of fundamental monomaials of NO. we™
is a proper class which is a complete set of represetatives of the comparability

classes NO>>>(1), with each element being the one of minimal length in its respective

equivalence class.
We now have

1.3.2 Higher order fixed points

Theorem 14. Let f : NO — NO be a function with the following properties:
1. for all a, f(a) is a power of w;
2. a<b= f(a) < f(b)

3. There exist fized sets C and D such that if a = G|H with G containing
no mazimum and H no minimum, then f(a) = [C, f(G)]|[D, f(H)].

Then there exists a function g which is onto the set of all fized points of
[ and whcih satisfies the above hypothesis on the sets f,(C) and f,(D), for
arbitrary positive n iterations.

1.4 exp

In this subsection we provide a brief overview of the exp map detailed in [?].



Definition. For each x € NO and n € w, let

xn
[x]5 = Z nl
<n

We define exp :—~q by

expx™ exp xl

exp(z) := {0, exp(z®) [z — 2], expr®[z—2]9p 41} | {[ZZ?R 20 [7F — 2l

The following facts have proofs from Chapter 10 of [?] or from immediate
examples.

Fact 3. 1. exp is a monotonic function onto NO=q;
2. exp | R s the real exponential function.

3. exp(z + y) = exp(z)exp(y) for all x,y € NO; furthermore, exp is an
isomorphism between ordered abelian groups (NO, +, <) and (NOsg, -, <).

4. exp(x) is a power of w and if a > 0, then exp(w®) has the form w(w(b)).
5. exp is not a $<$-hierarchy preserving map.

6. For x € NO~q, exp(w(x)) = w(w(g(z))), where g : NO~og — NO defined by
9(x) = {e(x),g(")} | {g(=™)},

with c(x) the unique number such that w(c(x)) ~ x.

The following result from van den Dries and Ehrlich is of model theoretic
interest [?].

Theorem 15. The surreal numbers are a model of the elementary theory of the
field of real numbers with the exponential function.

1.4.1 TODO k numbers pt 1

1.5 Normal Forms and Standard Form

Every surreal number x € NO has a Conway normal form. Specifically, for
every x € NO, there is an a € ON, a sequence of real numbers (7;);cq, and a
descending sequence of surreal numbers (a;);eq Such that

x = Z w(ai)r;

iEQ
where (a;)icq We define support of a surreal number a to be the set

S(a):={yeNo|IBealy =ya Arq #0)}.

10



Definition. Let x € No. If we express x = >, xum, as above:
m

1. The support of x is the set S(z) := {m e M | zyn # 0};
The terms of x are the elements of the set {Tmm | xy # 0} < R*M;
The coefficient of m in x is Ty;

The leading monomial of x is the maximal monomial in S(x);

SANE IS

The leading term of x is the leading monomial multiplied by its coeffi-
cient.

6. Given m € M, the truncation of x at m is the number

x = Z Tl

m<n

7. If y € NO is a truncation of x, we denote this by y < x.

Following [?], we have the following inductively defined map ¥ : R((91)) —
No:

Definition. Let f € R((9N)). With f, € R and m € M, and f | m denoting the
truncation at m, we define:

1. IfS(f) = &, then Sf := 0 e No;
2. If S(f) contains a smallest monomial n, define

Sf:=3Sf P n+ fan

3. If S(f) # & and has no smallest monomial, with q~,¢™ arbitrary dyadic
rationals such that $q~ <f

{m}<q®$
Sf={Sftm+g"m} | {Sf I m+ g m}

In particular, we recognize that

No = R((&%)) = R(()
Given that we may regard w™N° as the complete system of representatives
of Archimedean equivalence classes of NO~(, and that we can take the map
Ind from [?] that sends each surreal number to the exponent ag of its leading
monomial in normal form, we may regard the surreal numbers as a valued field
which is its own value group. Moreover, Kuhlmann showed in [?] that Ind is the
natural valuation of the real closed field No, with Ind(w®) = a for all a € No.

We can further deduce that NoO is a Hahn field of series in the following
sense: [?]

11



Theorem 16. 1. For any a € NoO, (w(w(a)) is the representative of minimal

length in No2§, i.e.

Va,y € NOZH, & ~eomp Yy = (Anew(z" =y = 2"

We set © ~comp %

2. Any a € NO can be uniquely written as

where for any i,

N

JEN

, the (ai)iex, (bij)jex;, form descending sequences of surreals, and for any i, 7,
we have s; ;,7; € R*, s0 that

) — wbi ;)"
w(a;) ]HL (w bJ)

In particular, using the definition of Hahn fields from [?], we find

so-x(())

We let J € NoO denote the (class) non-unital ring of infinite surreal numbers.
Specifically, they're the surreal numbers whose supports have infinite monomi-
als, so

J:={a|VYyeS(a)dz>0(y =w(z)} = No”* U {0}
It follows from the constructions above that

w(No) = exp(J)

A very important substructure of the surreal numbers are the omnific in-
tegers.

Definition. The omnific integers are the numbers of the form x = {x —
1} | {x + 1}. The class of omnific integers, denoted Oz, has the direct sum
decomposition J @ 7.

Remark. We note that surreal numbers can be given a natural direct sum de-
composition of
No=J®R®o(1)

where o(1) denotes the class of inifinitesimal numbers.

We may also put the surreal numbers in Ressayre normal form, as in
each $xe No

z =) exp(yi)rs
i€f

where (y;)iep is a descending sequence of surreal numbers.

12



Definition. Given x # 0 with Ressayre normal form 3. r,exp(a), with rq # 0

ael

if and only if a € S(x), we define £ : NO* — J by {(z) = max{a € J | r, # 0}.

Remark. The map above can be regarded as the logarithm a of the largest
monomial m = exp(a) appearing in the Conway normal form of x. Further, —¢
defines a Krull valuation on NO, given that

1 Az +y) < max{l(z), (y)}
2. U(zy) = L(x) + £(y).

An almost immediate consequence of these two normal forms is that the
surreal numbers can be understood as a valued field which is its own valued

group.
The following are facts about the normal form with respect to the simplicity
hierarchy (see [?] for more details):

Fact 4. 1. For all a,be No, w(a) <s; w(b) if and only if a <s b.
2. If a <4 b, then w(x)a <5 w(x)d.
3. Y wly)r <s 2, w(y;)r; whenever p <s v

1EWN Jjev

4. If pis a limit ordinal, then with ~ ranging over u, and n ranging over w,

we have
= AR s+ wu) s — 50} {0 + (o) + 50))

5. Ifre R\D, or r € D\Z and there is no y“, then
wy)r = {wy)r’} H{w(y)r™

6. For all r™ rR,
wy)r’ <s w(y)r

and

w(y)rf <5 w(y)r

7. If r € D\Z, and there exist y*, then
wy)r = {w(y) + 7" +wly")n} [H{w@)r® - wy®)n}
8. wy)rt +wyh)n <5 wly)r.
9. wy)rf —wy)n < sw(y)r.
10. For all n, sw(zf) <, w(z).
Consequently, we have

Proposition 2. Ifx <y, then z <, y.

We can also see that < is a weakening of <4 once we have our results on the
sign sequence of surreal numbers.

13



1.5.1 Sign-sequence representation

The following results are a summary of Gonshor Chapter 8 [?], as well as some
new results of Kuhlmann and Matusinski [?]. While each author has their own
preferred notation for concatenation and representing the sign sequence, we have
opted to use notation keeping in line with work found in Kunen [?], Jech [?],
and other more set theoretically inclined authors [?].

Definition. Recall that the surreal numbers may be regarded as (partial) func-
tions from ON — 2, so that for two surreal numbers a,b, we may concatenate
them to form a third number, a —~ b. The concatenation operation respects
standard results on ordinal length, i.e.

lh(a ~ b) = lh(a) ®lh(b)
as can be verified by an induction argument on the lengths of numbers.

Notation. FEvery surreal number a can be written as a transfinite concatenation
of — and +
a= (+C¥o —Bo Ta1 —p1° ")7

with 4+ (respectively —g) denoting a string of + (resp. -) of length a (resp. /),
and where for any p € ON, oy, By € ON with o, possibly being 0 for =0 or
w € Lim(ON).

For concision, we will denote by (a) the sign sequence of a, and write out
the sign sequence as the sequence of ordered pairs ({a;, B;y : i € 7).

Definition. Given a € No, let a® denote the total number of + appearing in
the sign sequence of a, so
at = Z ay,
w

as an ordinal sum.

Given a € N0, define a’ to be the surreal number attained by omitting the
first + sign.

Given a € NOy, define a' to be the surreal number attained by omitting the
first — sign.

Given a surreal in normal form a = Y, w%r;, the reduced sequence (a);ex

€A
1s attained by omitting - in the following sign sequences:

e given v € ON, if a;(y) = — and there exists j < i such that $a;(5)=a;(9)
for all 6 <, then omit the 6 -;

e if i is a successor, a;—1 —~ — = a; and if ri_1 1s not a dyadic rational,
then omit the - after a;—1 in a;.

The following theorems provide a concise overview of the sign sequence
lemma, as well as the sign sequence of generalized epsilon numbers.

14



Theorem 17. Given a = ({a;,B;)), for any p € ON appearing in the sign
expansion of a, we set
T = Z Q)
A<p

Then w® has the sign sequence
<w707w’}’0+1ﬂ> - (<w%a w71+15i>)0<i<,u

Theorem 18. Given a positive real v with sign sequence ({p;,0;)), the sign
sequence of wr is

(W) ~ (W g, w® o) ~ (W pi,w™ 0:))

with wa+p and w®' o being the standard ordinal multiplication (with absorption).
If r is a megative real, we reverse the signs.

Theorem 19. Given a = Y, w*r,
<A
(@) =~i<x w* (rs)

The following theorem is a combination of theorems 9.5 and 9.6 in [?]

Theorem 20. 1. a = ({ay,3:)) is an epsilon number if and only if g # 0,
all oy, # 0 are ordinary epsilon numbers such that o, > lub{on | A < p},

and B, is a multiple of w**< for all o, # 0, and a multiple of W'+ where
8y = > ay for oy =0.

A<p

2. Let v, = Y, ax. Then the p'™ block of + in e(a) consists of e, +’s and
A<p
the ™" block of -’s will consist of (e+,)* By -’s.

1.5.2 A quick review of summability

Having identified surreal numbers with R((9%)), we can explore the notion of
infinite sums. Namely,

Definition. Let (z;);cr be an indexed set of surreal numbers. We say (x;)r is
summable if | ] S(x;) is reverse well-ordered, and if for each m € | J S(z;) there
T

are only finitely many i € I such that m € S(x;).
When (z;); is summable, then the sum

y::ZIi

el
is the unique surreal number such that:

e S(y) = U; S(ws)

15



o for everyme M, ym = (X Ti)m = 2, Tim

el el

Definition. A function F : No — No is strongly linear if for allx = >, xuym,

F(z) =) zmF(m).
In particular, (zoF(m)) is summable.

Proposition 3. IF' F is a strongly linear function, then for any summable (z;),
the family (F(x;)) is summable and

F(Q a) = Y Flx)

Proof. The following one line proof is from [?]:

F%e) - (3 (Zo) w) = 3 Towro - Srien

meM \iel medM iel el

1.5.3 Nested truncation and standard forms

As observed above, we have that the w map monotonically preserves simplicity,
but that the exp map does not (as will be made clearer once we have log de-
fined). However, there are a subclass of numbers where exp is a monotonic map
preserving simplicity, as the following theorem from [?] shows

Theorem 21. Ifa,be J and a 1b, then exp(a) <, exp(b).

In general, the above result is not sufficient for studying exp and <,. The
authors [?] remedied this by introducing the notion of nested truncation and
a corresponding rank.

Definition. A finite sum of surreal numbers y = x1 + 29 + -+ + T, is in
standard form if S(xz1) > S(z2) > -+ > S(zn).
For x e NO*, set sgn(z) =1 if x > 0 and sgn(x) = —1 otherwise.

We then inductively define ranks « on NO™ over n € w as follows:
n

1.z« yifeQy;

2. x4 y if there are a « b with a,be J*, and z,w € NO and r € R* such
“n+1 n
that

x = z + sgn(r) exp(a)
y=z+rexp(b) +w

where both sums are in standard form.

16



We say x « y, or that = is a nested truncation of y if there is an n such

that x « .

n

< induces a foundation rank, which we define as follows:

Definition. For all z € NO*, the nested truncation rank, N R(z) is defined
by
NR(z) :=sup{NR(y) + 1|y <z
With NR(0) =0
Remark. Since all real numbers have no proper truncations, we find that R has

nested truncation rank 0

Theorem 22. « partially orders NO*.

Proof. Tt is immediate that « is reflexive since x < x for all z.
We prove antisymmetry as follows. Suppose for some n that x« y and y«z.

n
Immediately o.t. S(x) = o.t. S(y). Proceeding by induction on n, for n=0, we
have x = y. For n > 0, write x and y in the standard forms as above with
a < b. By the observation on order types, we have that w = 0 and by the

~n—1

hypothesis that y « 2, we have that r = sgn(r), and b « a. But then by our

inductive hypothesis, we have a = b, and hence x = y.

We prove transitivity as follows: Supposing for n,m € w that z« y« z. If
n = 0, then z <y, from which it follows that x « 2z as a truncation. Sirrrl?larly,

if m = 0, we have y < z, from which x « z. If Tr;Ll,n > 0, write y and z in the
following standard forms "

y = u + sgn(r) exp(b)
z=u+rexp(c) +w

with b<,,_1 ¢ (and $b,ce J*). We are done if  « 2, as z <u implies = « .

n n
Otherwise, —(z« z), so we must have x = z+sgn(r) exp(a) witha«  band
n “n—1
a € J*. By our induction hypothesis, we have that a « ¢, from which x « . O

[?] establish the following facts on «:

Fact 5. 1. For allz,y € NO™ and z € NO, if z+x and z +y are in standard
form, thenx «y < x+z<y+ 2.

2. For allx € NO™, and me M, if x « m, then v € M.

8. <« is the smallest transitive relation such that:
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o forallz,ye NO™, 2 dy =z <y;
o for all a,b € J*,a « b implies that exp(a) « exp(b) and —exp(a) «

—exp(b);
o for allme M*! and r € R, sgn(r)m « rm;

e Vr,y e NO*, and z € NO, if 2 + x,2 + y are both in standard form,
then if x « y, then z + x <« z + y.

4. For all x € No, the class {y € No | x <y} is convexr.
5. For all x € NO*, the class {y € No*xy} is convez.

6. J is closed under < and <. Namely, for all z € NO* and a € J*, if x < a,

then a € J*.

7. x <y implies that x <s y, implying that <« is well-founded, so that <« has

an associated ordinal rank which we’ll call our nested tree rank.
We state without proof several facts regarding the nested truncation rank:
Fact 6. 1. For allz € No, NR(z) = NR(—x).
2. For allaeJ, NR(a) = NR(+exp(a)).

3. For allm € M™t, and r e R*, if r # £1, then NR(rm) = NR(m) + 1 >
NR(m).

4. If x # 0, and if rm is a term of x, then NR(rm) < NR(z) and if NR(m)
is not minimal in S(z), then NR(rm) < NR(z).
1.6 log
1.6.1 Introducing the g function

While we had shown that for ¢ > 0, exp(w®) is of the form w*’ without us-
ing inductionl, we actually are able to inductively define g(a) using orders of
magnitude, as follows:

Theorem 23. Letting a = Y w%r;, we set ¢ = ag, i.e. ¢ is the unique surreal

«
number such that a ~ w€¢. Then

g(a) :={c,g(ar)} | {g(ar)}
Proof. From our earlier work, we have for positive surreal numbers x that
exp(w®) = w&®@

so we identify G(a) = w9(®) by the theorem where g was introduced.

18



Now, we define G(0) = 0, and then from the proof where g was introduced,
by cofinality we find that

G(a) == {rG(ar) + na} | {sG(ar)} = {0,7f(ar) + na} | {sf(ar)}.
Then, by inductively substituting G(a®) = w?"), we obtain
G(a) = {O,na,rwg(“) + na} | {swg(“R)}.

Since na will be equicofinal with nw® and rw9(*2) + na will be equicofinal
with 7w9(@L) + nwe and thus equicofinal with
nwmax(glar).c)

we find that
G(a) = {O,nwc,nwmax(g(“)’c)} | {swg(aR)}.

Thus, with G(a) = w9®, by our definition of the w map and cofinality we have

g(a) = {e;max(g(ar), o)} [ {g(ar)} = {c, g(ar)} [{g(ar)}
O

Example 2. We quickly verify that exp(w®) = w using g as follows. By induc-
tion, assume that g(27") = 27", Then

927" ) =g({o} [ {27} = {0} [ {g@™")} = {0} [ {27} =27

whence
glw ) =g({0} [ 27" = {-1} | {27} =0.
Thus .
exp(w®) = w* =w.

Remark. So far, the definition of g does not seem to have warranted my earlier
comments about the difficulties of tersely describing g. There are plenty of
results to come which ought to justify my comments; suffice to say that g is not
an identity function due to a ~ w°. In fact, g(x) may take on negative values,
which is entirely consistent with w®" being positively infinite for all z € NoO.

However, the main reason that it has taken awhile to introduce g is that
the study of the epsilon numbers in NO, and particularly the behavior of these
numbers under the exp map, is closely tied to the g function. Furthermore, many
of the results pertaining to the g function require our still as of yet unstated and
unproven sign representation lemma. Again, we shall defer studying both until
we have some more results pertaining to our exp and log functions, and the
questions raised in the past few papers.
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1.6.2 Exponential and Natural Log Revisited

The original reason we introduced g in the first place was to study how exp
transforms normal forms. Towards that end we will prove the following gener-
alized linearity property for exp:

Theorem 24. Ifa; > 0 for all i € «, then

exp(z wr;) = wY
«

where
Yy = ng(a)ifri

with g(a); = g(a;).

Proof. Since expx and w® are both homomorphisms, this follows immediately
for all finite sums and rational ;. From here, we proceed in stages.

First, for monomials w®r = {w?rp} | {w?rr}, where r° are given as some
dyadic representation, by induction and the density of the dyadic representations
in R, we have that

exp(wrg)
nlwirr — wor]

5.

exp(w?r) = {0, exp(wrp)n[wr — wr]} | {

We then simplify the representatives by mutual cofinality to

)

)rL+na} | {ww-"(“ erna}.

exp(w’r) = {0, W’

Hence, we 1 lave
g(a) ,
w > na

from which
w9@) = ng

follows in general for all positive integers. Thus

wi@ - "

a=wWr — I Dpp > g,
r—TrL

whence
wIDrp —na > wIDr > I Drp 4 na.

Having satisfied the inbetweenness condition and since the lower terms have
no maximum and the upper terms have no minimum, by cofinality we find that

wwg(a)r — {wawy(a)”‘} ‘ {wwy(a)T.R}

We now proceed to induct on « for arbitrary sums.
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The non-limit cases follow immediately by the additive properties of the exp
and w maps.
Supposing that « is a limit ordinal, then for arbitrary v € a and finite s > 0,

Zw‘”ri = {Zw‘“ri —ws} | {Z wrir; + w s},
[0 o' ¥

whence

exp (Y wirs) = {0, exp(Y " ri—w™s) (W 0)"} | {exp (e ritw™) (W p) ",

ol v

where o (and similarly p) is such that

w0 = w*s + Z wr;

a\y
ie. |s—ol|,|s — p| will be infinitesimal.
Furthermore,
ng(“)iri = {Z who@) —g(a)wg(“”)s} | {Z w9 @ip; 4906},
o Bt Bt

and since the lower terms have no maximum and the upper terms have no
minimum, we find that
ng(a)iri F G
we = {0,w™} [ {w™}
where I, G are the set of lower and upper terms respectively.
As is common in all of these proofs, we will use cofinality to show that

wg(‘l)i,,‘i
the representation of exp(> w®ir;) will give we after first verifying the
[e3%
betweenness condition.

The betweenness condition follows by mutual cofinality and several obvi-
ous substitutions such as w9(®) > na for all n € Z, and from s not being an
infinitesimal. Specifically, a common lower term will be

eXp(Z wr; —w )W = w?
B!

where y = Y w9 @i, —9lar) g 4 na~ by the inductive hypothesis and the addi-

S
tivity of exp.
We then see the betweenness for lower terms is satsfied as

W < S wI@ip; - wg(aw; < Nt @iry,
v v

and a similar inequality holds for the upper terms, so that by the inductive
hypothesis, a typical term of w’ is of the form exp(}w®r; — w*s). Since

5
a > 0 by hypothesis, we have that w™* > 1 and this completes the proof for
representatives of w!". A similar argument is run for w®. U
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Remark. As a consequence of this result, studying the behavior of exp x reduces
to studying g.

1.6.3 The Uniformity of the Natural Log

Having seen that the task of studying exp reduces to studying g, we naturally
ought to ask is there something similar that we can use to study log?

The answer is yes, but before we define an h function that acts as the inverse
of g, we need to check that we can obtain log(w®) using representations of
a=1{ap}|{ar} = F|G.

The uniformity theorem is valid for the natural log function.

Proof. The following inequalities are derived from standard order of magnitude
arguments and properties we have established about the w map:

For lower elements a;, < = < a, we have log(w®) + n > log(w®=) + n and
Zag

log(w®) + w " < log(w™) +w .

For upper elements a < z < ag,log(w®?) + n < log(w®®”) + n and log(w®) —
W > log(wb®) — w

Once we have these inequalities have been established, as with all uniformity
theorem proofs, the rest of the proof is handled by the use of the inverse cofinality

theorem and an application of the cofinality theorems. O

1.6.4 TODO log: No" - No

Theorem 25. For all a € No, In(w*") is a power of w.

Proof. By uniformity, we look at the representation w® = {0,w*c"} | {w*r%},
to find the following after several simplifications, the additivity of log courtesy
of what we (currently) know about exp (specifically that on the domain under
investigation that log is an inverse of exp, and thus In is additive in the familiar
sense: log(w®) + log(w®) = log(w*?)), and general cofinality arguments:

a
w“Lr) wa'RS) wiRs—w® WOR s

log(wua) = {log(w(0)) + n,log(w ,log(w —w n } | {log(w

w?Rs—w?

= {n,rlog(wwaL) +n,slog(wwaR) —w n H {slog(wwaR) —n,wwa,rlog(wwa[‘) +w

AR 4@
= {n,rl()g(u.z“’al‘),sl()g;(u.z“’aR)—(,uw T }|{slog(w“uR),w“’a/n,rlog(wwaL)

}

+ w

= {n,rlog(w® F)} | {slog(w® ™), 5w "

That is, by cofinality, the final representation of log(w“ay) exhibits a surreal number of the form w®.
Moreover, we may define an ’inverse of g(x)’ as follows:

W@ = ln(wwm)

such that o
h(a) :={0,h(ar)} | {h(ar),wn }.
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Remark. We have that for all a € No, h(a) > 0, and this is what shows that
the range of the g function consists of all the surreal numbers, whence we may
conclude that exp x induces a map from the class of the positive surreal numbers
onto the class of all surreal numbers via the In map.

Furthermore, the uniformity theorem is valid for g and g, as for x <y, then
¢z < ¢y, where ¢, is such that x ~ w and similarly for c,.

1.7 log-atomic numbers

The following is a rapid overview of the log-atomic numbers and their properties,
see [?] for further details.

Definition. Let x be a positive infinite surreal number. x is log-atomic if for
all n € w, log, r € ML, i.e the n'* log iterate is an infinite monomial for all
natural numbers n. Let I denote the class of log-atomic numbers. It follows
that L < 9>1.

Berarducci-Mantova introduced a weaker order relation than the one track-
ing Archimedean class:

Definition. For x,y € NO, with x,y > N,
1. z <Yy if v < exp,(klog,(y)) for some n,k e NT;
2. v <My if v <exp,(zlog,(y)) for alln,k e N*;
3. ="y ifexp, (1klog, (y)) < wexp, (klog, (y)) for some n,k e N*.

One can check that = is an equivalence relation. We say that the equivalence
class
[] = {ye No |y >Nnay="ua}

1s the level of x.
The following facts can be found in [?]:

Fact 7. 1. =L is an equivalence relation with x =" y if and only if there
exists an n € N such that log,, (z) ~ log,, (y).

2. Each level of x is a union of positive parts of archimedean classe and <"
induces a total order on the levels.

3. For all p,Ae L, if p < A, then p <" \.

4. If x,y > N, and:c:y, then x =" y.

5. L is a class of representatives for =% with each A € L the simplest number
in its level (with respect to <.

6. For all x € No, NR(z)=08$ if and only if z € R or x = £A\T1 for some
Ae L.
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1.7.1 A numbers

Recalling ¢ as the Krull valuation defined above (and that the surreal numbers
form their own value group), we have the following consequence of some of the
facts above:

Proposition 4. For any x € NO such that {(z) # 0, there is some n € w such
that £, () = £(--- (£(x)) € L.

We can parametrize the levels of . with the so called A numbers, which have
a genetic definition

Definition. For every x € NO with canonical representatives ™, 2, define

Nz) := {k, exp,, (klog, (A(z")))} | {expn(% log,, (\(z")))}

where n, k range over w.
Question 1. What are the cardinal characteristics of log(«) for o € ON.

Fact 8. 1. A : NOo — No is a well-defined monotonically increasing map
such that x < y — Mz) <" A(y).

2. For every x € NO with x > N, there is a unique y € NO such that x =" \(y)
and Ay) <s x, with A(y) the simplest representative of its level.

3. A(No) =L

1.7.2 TODO k numbers pt 20

Recalling that the x numbers are intended to convey a notion of magnitude, [?]
define the following relation:

Definition. For any two x,y € NO such that x,y > N:
1.z <"y if x < exp,(y) for some n e N;
2. x <"y ifx <log,(y) for alln e N;
3. ="y iflog,(y) <z <exp,y for some n e N.

¥ is an equivalence relation.

Proposition 5. =
Proposition 6. For all z,y € No, with z,y > N, =L y implies v =" y.

We then properly define the x numbers with respect to a genetic function
that identifies canonical representatives of each =" equivalence class:

Definition. For all x € NO,

k(@) := {exp, (0), exp,, (k(z"))} | {log, (r(z"))}

where n ranges over N.
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Remark. It is seen immediately that k(0) = w(0) and k(1) = (0).
Fact 9. 1. x <,y if and only if x(x) <s K(y).

2. For all x > N, there exists k(y) <s x such that k(y) =" x, so each k(y) is
the simplest element in its respective equivalence class.

3. x <y implies that k(z) <" K(y).

4. log,, (k(x)) is always of the form w(w(y)), and therefore each log,, (k(x)) €
M.

5. k(No) c L.

6. There are numbers in 1L which cannot be obtained from x(NO) by finitely
many applications of log and exp

Following this last fact, with the goal of generating L from x(N0), Berarducci
and Mantova focus on the x(—a) numbers for v € ON. Specifically

r(—a) = N|{log,(k(=p) [neN, S e a}

will be the simplest positive number less than log, (k(—f)) for all n € N and
B € a.. From this, they find

Proposition 7. The sequence {x(—«) | « € ON) is a decreasing and coinitial
with the positive infinite numbers (i.e. every positive infinite number is greater
than some k(—a), and from this we find L is coinitial in the positive infinite
numbers.

1.8 TODO 0dpy

Berarducci and Mantova provide a construction of a derivative dgys such that
gives (NO, +, -,exp, 0 ) is a Hardy type series derivation. More precisely, they
equipped NO with a derivation so that N0 is a Liouville closed H-field with dgys
surjective and sending infinitesimals to themselves.

We begin by defining surreal pre-derivatios Dy, and surreal derivations D in
such a way to make (No, D) an H-field, a generalized notion of a Hardy field.
Afterwards, we define the Berarducci-Mantova derivative, explore some imme-
diate facts and properties of the derivative, and . Afterwards, in an additional
subsection, we provide an overview of some transcendence results, applications
to the theory of transseries, and integration.

Definition. A (surreal) pre-derivation is a map Dy, : L — R. o9 such that
1. Tog(DL(A) — Tog(Dr (1)) < max{A, u}.
2. Dy (exp(X\)) = exp(A\)Dp(A) for all A\, € L.

A surreal derivation is a function D : NO — NO with the following prop-
erties:
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~

. (Leibniz rule): D(xy)=D(x)+D(y)

NS}

. (strong additivity): D(Yie 12:;)= e 1D(x;)$ for all summable sequences

o

. (compatibility): D(exp(z)) = exp(z)D(x)

B S

. (real constant field): ker(D) = R
. (H-field): if x > N, then D(x) > 0

v

The following facts are true for all surreal derivations D:
Fact 10. 1. if 1 # x>y, then D(x) > D(y);
2. if 1 #x ~y, then D(x) ~ D(y);
3. if 1 £ x =y, then D(z)= D(y)$
4. For xz,y € No, if z,y,x — y are all positive infinite, then
log(D(x)) —log(D(y)) < = — y < max{z,y}

Berarducci-Mantova define their derivation Jdgjs first by defining one on
L — NO-g, and then extending the definition to all of NO by means of path-
derivatives.

Definition. For )\ € L, with a ranging over the ordinals, let

O :=exp | — 2 Z log; (k(—a)) + 2 log;(\)
i=1

A<Fr(—a)i=1

Since {log; A is a strictly decreasing sequence of monomials, it is summable.
Similarly, {(k(—a)) is decreasing, so (log;(k(—a)) will also be summable. Fur-
thermore, if A\ = k(—a) for some ordinal «, then the terms log;(\) cancel out,

and we find that
2L (N) = exp (2 3 logiw(—ﬁ)))

B<ai=1
with oy (w(0)) = éL(k(0)) = 1.

We now define paths and path derivatives, before we define dpj; with respect
to the pre-derivative 0.

Definition. A path is an sequence P : N — R*9M such that for every n € N,
P(n + 1) is term of £(P(n)).

P(z) is the set of paths such that P(0) is a term of x.

Given a path P, the path derivative d(P) € RO is defined as follows:

1. if for some n € N such that P(n) € L, set d(P) = [] P(¢) - or(P(k));

i<k
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2.

if for allne N, P(n) ¢ L, set O(P) = 0.

We define the Berarducci-Mantova derivative 0 : NO — NO by

o)== Y, aP)

PeP(x)

Given x € NO\R, the dominant path of x is the path Q € P(x) such that
Q(0) is the term of maxzimum non-zero £ value of x and Q(i + 1) is the leading
term of £(Q(4)) for all i € N.

We now state many facts about the pre-derivative, paths, and the Berarducci-
Mantova derivative:

Fact 11. 1. For all \,p e L, log(dL(N\)) — log(dL(p)) < max{\, u}

2.
3.

4.

10.

11.

12.
15.

For all X e L, d(exp(N\)) = exp(A)IL(A)
If P is a path, then 1 < P(i + 1) < log(|P(?)]) < P(i) for all i > 0.

If t < w are both monomial terms, and v is a term of £(t) but not £(u),
then v™ < % for all n € N.

If P,Q are two paths such that d(P),d(Q) # 0, then if P(0) < Q(0) and

QO for all n e N, then 0(P) < 0(Q).

P(1)" < P0)

Extending Fact 5, if there exists an n such that for all m < n, P(m) <

Qn) for all k e N, then o(P) < 0(Q).

Q(m), and P(n + 1)k < P

If P,Q are two paths with non-zero path derivative and there exists an
n € N such that for all m <n, P(m) < Q(m) and P(n + 1) is not a term
of £(Q(n)), then o(P) < 0(Q).

Given P € P(z), NR(P(0)) < NR(x), and if NR(P(0)) = NR(z), then
the minimum m of S(z) is such that P(0) = rm for some r € R*.
<

Similarly, for alln e N, NR(P(n+1)) < NR(P(n)) and if equality holds,
then there is a minimum m in S(¢(P(n))) such that P(n + 1) = rm for
some r € R*.

For all x € No, there is at most one path P € P(z) such that NR(P(n)) =
NR(z) for all n € N.

If x € NO\R with dominant path Q, then d(Q) # 0 and 3(Q) is the leading
term of O(x).

ker 0 = R.
If £ > N, then d(z) > 0
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14. 0 is strongly linear, and therefore strongly additive.

15. For all ye J, d(exp(y))=exp(v)o(v)3.
16. For all x,y € No, d(zy) = 2d(y) + yo(zx).
17. For all x € NO, d(exp(z)) = exp(z)d(x).
Using the facts above, we summarize the proof of summability from [?]
Theorem 26. For all x € NO, the family {(0(P) | P € P(x)) is summable.

Proof. For any x € NO, it suffices to show that there is no sequence of distinct
paths (P;)ien in P(z) such that we have an infinite ascending chain

aPoﬁéPlﬁanim,

since 0(P) € RO for all P(x).

Towards a contradiction, suppose that there exists such a sequence and let
a = NR(x). Since the paths are distinct, there must be a minimum m € N such
that P;(m) # P;(m) for some 4, j € N. We proceed by double induction, first on
a, and then on m.

Let rexp(y) be the maximum ¢ value from {P;(0) | j € N}.

By fact 11.8, if NR(y) = «, then rexp(y) is also the term of minimum /¢
value, whence P;(0) = P,(0) for all j. Thus m > 0.

If NR(v) < a, we extract a subsequence so that

rexp(y) = Po(0) = P1(0) = P»(0) > --- .

If P;(1) is not a term of v = ¢(FPy(0)) for some j € N, but Fact 11.7, we find
that d(P;) < 0(FPp), which is a contradiction.

Therefore, P;(1) must be a term of «y for all j € N.

Now consider paths Q; defined by Q;(n) = P;j(n + 1), for all n € N. Let r
be the minimum integer such that Q;(r) # Qx(r) for some j, k.

In the case of NR(vy) = «, we have that » = m — 1, and that for all j € N,
we have Q; € P(x).

Thus, we find that d(P;) = P;(0) - d(Q;), and that we have a descending
sequence

P()(O) ZPl(O) ZPQ(O) >,

from which we derive an ascending sequence
0Qp < 0Q1 <0Q2 < -+ .

Now, we either have that (1) NR(y)=a$ and r < m; or we have (2) NR(v) < «,
and both of these contradict the induction hypothesis that no suchh sequence
exists in 7.

Thus (0P | P € P(x)) is summable. O

Theorem 27. Op)s extends O .
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Proof. By facts 11.12 to 11.17, we find that dgj; is a surreal derivation. By
restricting dpp to L, Opar | L takes values in the subfield R((R)) of No. Since
we compute Opps as finite products of infinite sums, we see that J(R{(R))) <
R{R)), from which dpps | LKLL)) will induce an H-field structure on R{KL)).

O

Corollary 2. Let d:IL — N0~ be a map such that:
1. for all \,p e L, log(d(X)) — log(D(n)) < max{\, u};
2. for all A(L), d(exp(A)) = exp(A)d(N);
3. d(L) c R*IMm.

Then d extends to a surreal derivation D on NO.

1.8.1 TODO Transcendence, Transseries, and Integration

1. Transcendence Recall that if V is a Q vector space, and W < V, then
H < V is a Qlinearly independent modulo W if its projection to
V /W is Q linearly independent.

Using Ax’s theorem, and a general result regarding all models of Rexp,, we
can show that the definable closure operation coincides with exponential-
algebraic closure. From this, the following Schaunel type statements will
hold modulo the exponential-algebraic closure of the empty-set.

Theorem 28. For any R |= Rexp, if 1,...,2, € R are Q linearly inde-
pendent modulo dcl(()F), and k is the exponential transcendence degree
of x1,...,2, over del(()), then

tr.deger(p) (21, - - s Tn, E(x1), ..., E(z,)) = n 4+ k

Proofs for the above theorem can be found in 1001[?, ?]. This result can
be restated for differential fields as Ax’s theorem [?]:

Theorem 29. Suppose that (K, D) is a differential field, and z1, ..., xn, 41, ..

D(y;)

are such that D(z;) = for all i < n. Furthermore, suppose that all

x; are Q linearly independent modul ker(D). Then
tr.degrer(p)(T1, -+ s Tny Y1y, Yn) =0+ 1

Taking K = NoO and D = gy, and y; = exp(x;) leads to the following
corollary

Corollary 3. If x1,...,x, € NO are Q linearly independent modulo R,
then
tr.degr(z1,...,Tn,exp(z1),...,exp(x,)) gen + 1
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2. Transseries One important result from [?] was to disprove a conjecture
of [?], namely, that No = R({(R)). This result relates to the study of
fields of transseries, and relies on the well-foundedness of the partial order
relation «. Whereas R((LL)) is a field containing R(L), and closed under

infinite sums, exponentiation, and logarithm, it is nonetheless a proper
subfield of NO, which maintains a transseries structure.

Before elaborating further on this result, we recall Schmelling’s notion of
a transseries.

Definition. Let F be an ordered field, and exp : (F,+) — (F*,x) be
a monotonic increasing group homomorphism such that exp(x) > 1 + x
for all x € F and Im(exp) = Fso. Further, let T' be an ordered group,
and B < F((T')) an additive group containing F((T'<o)), with a monotonic
homomorphism exp : (B, +) — (F((I"))*, x) which extends exp : F — F*
to B.

We say that (F((T')),exp) is a field of transseries if it satisfies the fol-
lowing four azioms: T1. Im(exp) = F((T'))so; T2. T < exp(F((T's0)));

o0 n
T3. exp(z) = X, m—' forallx € F((T<o)); T4. for all sequences of mono-
n!

n=1
mials m; € T', with i € N, such that for riy1 € F* and for v;11,0;41 €

F((I'>0)),
m; = exp(Yitr1 + Tip1Mig1 + dit1),

with Yix1 + rip1mie1 + d;41 in standard form, then there is a k € N suh
that 7,01 = £1 and §;41 =0 fori > k.

Taking FF = R and I' = 9 = exp(J)), and B = No, we find that No =
R((9M)) equipped with Kruskal’s exponential function will be a model of
1-3.

[?] argued that the well-foundedness of « is equivalent to NO satisfying
axiom T4. While the analysis of « in [?] is solely with respect to the
surreal numbers and notions of paths therein, paths and « can be extended

to general transseries structures as follows:

Definition. For a path P : N — F*((T'sq)), write
P(Z) =Ty exp(%-ﬂ + P(Z + 1) + 5i+1)

where viy1,0i+1 € Dsg and vi41 + P(i + 1) + 0;41 are in standard form.
We define for all x € F((T')) the notion of path space P(x) as before.

A path P satisfies T4 if there exists a k € N such that r;y1 = +1 and
0,41 =0 for all i = k. Otherwise, P refutes T}.

x € F((T)) satisfies T4 if for all paths in P(x) satisfy T4. Otherwise, x
refutes T}.
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Proposition 8. Let x € No, and P € P(z). If NR(P(i)) = NR(x) for
all i € N then P satisfies T4.

Theorem 30. Axiom T4 holds in No, with F' = R and T' = I, whence
No is a transseries in the sense of Schmelling.

The crucial point yet to be mentioned to understand the result at the top
of this subsubsection is that axiom T4 is a weaker form of an axiom ELT4
introduced in [?].

Definition. Let F < No. F is truncation closed if for every f € F, and
me M, we have f | meF.

A truncation closed subfield F of NO closed under logarithm satisfies ELTY,
if and only if for all sequences of monomials m; € M N, with i € N, such
that

m; = exp(Yis1 + rip1Miy1 + iv1

where riy1 € R*;v;41,0;41 €J and vi41 + rip1myrq + 0,41 18 in standard
form, there is a k € N such that r;21 = 1 and ;11 = d;x1 = 0 for all
12 k.

[?] remarks that ELT4 implies that the sequence (m;) eventually satisfies
m; € L, and that in terms of paths, a truncation closed subfield F of NoO
closed under log satisfies ELT4 if and only if for every x € F, and every
path P(z), there exists a k such that P(k + 1) € L. As a consequence,
they prove the following proposition:

Proposition 9. R{L)) is the largest truncation closed subfield of NO
closed under log and satisfying ELT.

After proving this result, [?] provide a proof to show that R{L)) is a
proper subclass of No.

. TODO Integration

TODO Forcing

The notion of forcing was originally developed by Paul Cohen to construct a
model of ZFC in which the Continuum Hypothesis did not hold. His approach
took a transitive model M of ZFC and adjoined a generic set G such that
M[G] = —CH.

Throughout, we let P = (P, <) denote a non-empty partially ordered set,

and call (P,<) a forcing notion whose elements are forcing conditions.
Conditions p and ¢ are compatible if there exists an r < p, g, and otherwise,
they are incompatible, which will be denoted by plq. A set W < P is an
antichain if its elements are pairwise incompatible. A set D P is dense if for
every p € P, there is some ¢ € D such that ¢ < p.
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Given a forcing notion P over some ground model M, let G = P denote
a generic filter over P. We then describe M[G] as a generic extension of M.
Each element in M[G] has a name in M, and associated to P is a forcing
language, and a forcing relation . Given a generic set G, every constant of
the forcing language is then interpreted as a constant in the generic extension
MI[G].

The following facts can be found in [?] as Corollary 14.12 and Theorem 14.10
respectively.

Fact 12. For every partially ordered set P, there is a complete Boolean algebra
B = B(P) and a mapping e : P — BT, where (B*,<) is a separative partial
order (i.e. for all p,q € BT, if p € q, then there exists an v < p incompatible
with q), such that:

1. if p < gq, then e(p) < e(q);

2. p and q are compatible if and only if e(p) - e(q) # 0;
3. {e(p)|p € P} is dense in B.

B will be unique up to tsomorphism.

Fact 13. Let P be a separative partially ordered set. Then there is a complete
algebra B such that:

1. P c B* and < agree with the partial ordering of B
2. P is dense in B.
The algebra B is unique up to isomorphism.
These two facts raise an interesting question given that NO is a proper class.

Question 2. Is there a complete (class) algebra B such that No < BT and <¢
agrees with the parital ordering of B, and NO is dense in B?

Answering this question will require a move into second order logic that can
properly handle classes, and so we will put this question aside for now, as we
continue to review the rudimentary elements of forcing.

Definition. We inductively define names as follows:

Let M |= ZFC be a transitive model, let P € M be a forcing notion. Then a
P-name o in M contains elements of the form {(r,p) where T is a P-name and
pelP.

Given a P-name o in M, and a P-generic filter over M, let

oG = {TG | E|p€ G7<7_7p>€ o

and
M[G] := {og | o e MF

where MT is the set of P-names.
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The following theorems have detailed proofs found in [?].

Theorem 31. Let M be a transitive model of ZFC, and let P be a forcing
notion in M. If G < P is a generic filter over P, then there exists a transitive

model M[G] such that:
1. M[G] &= ZFC;
2. M c M[G] and G € M[G];
. ONMICT = ONM;

3
4. if N is a transitive model of ZF such that M < N and G € N, then
M[G] < N.

The forcing relation |- generalizes model-theoretic satisfaction = in the forc-
ing language.

Theorem 32. Let P be a forcing notion in the ground model of M, and let MF
be the class in M of all names. Then

1. (a) Ifpl- ¢ and q < p, then q IF ¢;
(b) No p forces ¢ and —y;

(¢) For all p there is a ¢ < p such that q|¢ (q decides @),i.e.q ¢ or
ql-—p.
2. (a) plr—p = —Jqg<pql- o
(b)) pp Ay < pl-v and p - .
(¢c) pl-Vzp < pl- ¢(a) for everyae MF.
() pl-p v = Yg<p3r<q(ri-¢ orri-1)
(e) pl-3Izp = VYq<pIr <qae MF(riF p(a)).

3. If p IF 3z, then for some a € MY, p - ¢(a).

Example 3 (Cohen Forcing). Let P = (2<%, <) with the ordering ¢ < p if and
only if p = q. Let M be a ground model containing P, and let G be Pgeneric
filter over M.

Further, set f = |JG. Since G is a filter, f will be a function whose domain
18 w. Furthermore, we can regard f as a characteristic function on some subset
A c w. This can be seen as follows:

For every n € w, let D,, = {p € 2<% | n € Domp}. It is immediate that D,, is
dense in P, and therefore it will meet G for every n € w. Thus Domf = w.

We note that f ¢ M, and as a characteristic function of A, A ¢ M as well.
For every Boolean function g€ M, set Dy = {p € 2<% | p & g}. It is immediate
that Dy is also dense, so Dy will meet G, and thus f # g as well.

The sets A < w obtained above are known as Cohen generic reals. This
leads to Cohen’s famous theorem
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Theorem 33. There is a generic extension V[G] such that 280 > X;.

Proof. Let P be the set of finite Boolean-valued partial functions defined on a
subset of ws x w, such that p < ¢q if ¢ = p.

If G is a generic set of conditions, set f = [ JG. Since G is a filter, f is a
function.

We check that Domf = wy x w. Since the sets Dy, = {p € P | (o,n) € Domp}
will be dense in P, G will meet each D, ,;. Thus (a,n) € ws x w for each
(a,n) € wy X w.

Now define f, : w_{0, 1} for each « € wy by:

fa(n) = f(a,n)

For ao # B, fo # fg since D = {p € P | n € w(p(a,n) # p(B,n))} is dense
and therefore G n D # (.

Thus in V[G], there is a monic map wy — 2%.

The remaining proof that |wy | = RY[G] (and that this forcing notion pre-
serves cardinals) can be found in [?] Chapter 14. O

Each f, above is a characteristic function of a Cohen generic real, and so P
will adjoin Ny Cohen generic reals to the ground model.

3 TODO Some ordinal analysis
4 TODO What Next

Given the sign sequence lemma, and the understanding that each surreal number
can be understood as a predicate of a given ordinal in Cantor normal form, and
that forcing notions add no new ordinals, the behavior of the surreal numbers
under various forcing notions warrants investigation.

It is worth noting that immediately, the field operations inductively defined
over the surreals do not correspond nicely to boolean operations on the subsets
of ordinals.

UP NEXT

e The surreals in Godel’s constructible universe L.

e Ordinal Analysis for algebraic structures of interest (RCF, DRing, analytic
field, etc);

e Classifying maps j : No — NoO with respect to elementary j : V — V[G];

e Friedman’s Inner Model Hypothesis (does every first order sentence ¢
holding in an inner model of a universe V* 2 V hold in some inner
model of V') - inner models of a model of ZF(C)$ are transitive submodels
containing all of the ordinals (and therefore each inner model contains a
copy of the surreals). This is inspired in part by the Inner model reflection
principle that shows whenever a first order formula ¢(a) holds in V, then
it holds in some inner model W < V.
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e Iterated forcings using subfields of the surreal numbers as the underlying
posets.

e Studying generalizations of descriptive set theory to infinitary logics us-
ing singular, weakly, measurable, and supercompact cardinals x and the
subrings NO(k).
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