
WHAT IS EQUIVALENCE?

0.1. Preliminaries: Weak ω−groupoids as an Algebraic Structure
Is this an idea? It would be bad form to fail to mention type theory when speaking about ω-groupoids, if only because this
would be analogous to talking about manifolds while failing to mention their utility in describing configuration spaces. This is
because the syntactical approach gives a relatively concrete meaning to what is to follow. The following definitions are courtesy
of Guillaume Brunerie:

Definition. A context Γ is contractible if either Γ is a singleton Γ = (x : ?) or Γ is obtained from some Γ′ by duplicating a
variable (x : A) ∈ Γ′ and gluing Γ = (Γ′, (y : A), (x : x 'A y)).

Given a context Γ, a term is either a variable x such that (x : A) ∈ Γ for some type A or a coherence cell coh∆.A(u1, . . . , un),
where coh∆.A is such that the input ∆ = (x1 : B1, . . . , xn : Bn) is a contractible context, the output A is a type in ∆, and in Γ, the
arguments ui are terms satisfying uk : Bk[x1 := u1, . . . , xk−1 := uk−1] such that coh∆.A(u1, . . . , un) : A[x1 := u1, . . . , xn := un].

Example. If a : ? is in Γ, then coh(x:?).(x'?x)(a) : a ∼=? a.

One of the remarkable things about weak ω-groupoids is that they can be used to algebraically encode geometric shapes. We
remind the reader of the following definitions:

Definition. A globe category G is a category whose objects are n ∈ N, and whose morphisms are generated by source maps
σn : n→ n+ 1, and target maps τn : n→ n+ 1, which satisfy the following relations

• σn+1 ◦ σn = τn+1 ◦ σn
• σn+1 ◦ τn = τn+1 ◦ τn

for all n ∈ N. We define a globular object G in a category C as a contravariant functor G : G→ C. In particular, a globular set
is a presheaf on G, and the category of globular sets, denoted by gSet, is the category of all presheaves on G. Thus, any globular
set G corresponds to a collection of sets {Gn}n∈N equipped with the n-source and n-target functions {sn, tn : Gn+1 → Gn}n∈N
where by contravariance of presheaves, the following globular identities holds for all n ∈ N

• G(σn+1 ◦ σn) = sn ◦ sn+1 = sn ◦ tn+1 = G(τn+1 ◦ σn)
• tn ◦ sn+1 = tn ◦ tn+1

Definition. Recall that a groupoid G is a small1 category such that for every pair of objects x, y ∈ G, every morphism
f ∈ HomG(x, y) is an isomorphism. More precisely, we mean each f is invertible.

A weak ω-groupoid G is a globular set such that for every contractible context ∆ and types A in ∆, there is an operation
coh∆.A : (η ∈ J∆K) 7→ ob(JAKη) where

• J?Kη := G
• Ju 'A vKη := HomJAKη (JuKη, JvKη)
• JxKη := η(x)
• Jcoh∆.A(u1, . . . , un)Kη := coh∆.A(Ju1Kη, . . . , JunKη)
• J(x1 : B1, . . . , xn : Bn)K := {(a1, . . . , an) | ak ∈ ob(JBkKa1,...,ak−1)}

Notation. J•K are the Strachey brackets, denoting a semantic evaluation function.

Remark. This syntactical approach interprets types as iterated hom globular sets of G and terms are cells of G.

Remark. The term weak refers to the notion that these invertible morphisms are restricted only to be invertible up to all higher
equivalences. What we mean by equivalence will be answered in a moment.

0.2. What Is Equivalence? There are many instances in mathematics where we find ourselves asking the question, “ Are
two ’things’ the ’same’?”

What is meant by ’things’ and ’sameness’ is really a matter of the working context of the question. For instance, it makes
sense when working with sets to ask if two elements are the same, or if two sets are the same. This is tantamount to asking if
x = y or X = Y . Such a question is sensible because sets have a predicate structure amenable to this question. Sameness is a
matter of membership; elements are either the same or they are different. But suppose we’re asking questions about objects in a
specific category, such as the category of groups Grp.

In this case, two objects X,Y can be the same object (as sets, X = Y ), or they could be isomorphic (as there is some pair of
maps f ∈ HomGrp(X,Y ), g ∈ HomGrp(Y,X) such that g ◦ f = 1X and f ◦ g = 1Y ). This distinction shouldn’t be entirely unfamiliar
since the contemporary conception of symmetry is built upon the idea that an object could be the same as itself but in different
ways (we track this information by the group of automorphisms for a given object). However, we are only looking at objects.
What about morphisms?

At the level of a category, morphisms are either the ’same’, or they’re different; there is no notion of isomorphic morphism when
working within a category. However, when working within a 2-category, we introduce 2-morphisms, maps between morphisms

1A category is small if both the class of objects and each class of morphisms is a proper set.
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satisfying certain composition rules, and it is these composition rules that allow us to identify when morphisms are the “same”.2

However, neither of these examples captures why it might be useful to have a coarser notion of equivalence than equality. Consider
the category Top, whose objects are topological spaces and whose morphisms are continuous maps. To my (rather limited)
knowledge, topological spaces are not classified up to homeomorphism, but rather, a courser equivalence relation: homotopy.
As a reminder, given two X,Y ∈ obTop with f, g ∈ HomTop(X,Y ), we say f and g are homotopic, denoted by f ∼ g, if there is a
map H ∈ Hom(I ×X,Y ) with H(0, ·) = f and H(1, ·) = g, and where I = [0, 1]. We can then say two spaces are the same (more
precisely, they are homotopy equivalent) if there are f ∈ HomTop(X,Y ) and g ∈ HomTop which are inverses up to homotopy. By
considering homotopies between our continuous functions, we’ve made Top into a 2-category, where the objects are still topological
spaces, the 1-morphisms are still continuous maps, and the 2-morphisms are homotopies between these maps. Hopefully, this
notion of equivalence is illuminating, as well as an ample illustration of just how we can have levels to our notion of equivalence,
as we can proceed to take homotopies of our homotopies, and so on.

Using this iterated approach, we can regard Top as the prototypical ω-category. The fundamental reason for this seems
innocuous enough; it is because I can be regarded as a reversible arrow object.3 One of Grothendieck’s many insights was that
homotopy theory is a branch of higher category theory in the sense that for any space X, we can find a weak ω category Π(X),
whose objects are the points x ∈ X, whose 1-morphisms are paths, whose 2-morphisms are paths of paths, and so on. Because
the unit interval is directed, every k−morphism in Π(X) is an equivalence (that is, we can simply reverse the direction of the
path). In this way, we can remark that Π(X) is truly a weak ω-groupoid as all morphisms are invertible, and because composition
is associative.

So to answer the motivating question, from the perspective of higher category theory, in a 0-category (the level of sets),
an equivalence is merely equality. In a 1-category, an equivalence between objects is an isomorphism. In a two category, an
equivalence between equivalent 1-morphisms is the existence of 2-cell isomorphisms, and so on.

0.3. Kan Complexes Now, we have previously seen the globular presentation of ω-groupoids. Another powerful example

is the simplicial presentation where an ω−groupoid is identified with fibrant objects in the simplicial category ∆.4 This
construction is typically called a Kan complex. In order to arrive at such a construction we will need the following definitions:

Definition. The simplicial category ∆ is the category whose objects are non-empty, finite ordinal numbers and the order pre-
serving maps between them.5 In particular this means that the objects are sets [n] = {0, 1, . . . , n} and the hom-sets Hom∆([m], [n])
are the non-strictly order preserving maps from [m], [n].

There are two important subcategories of ∆, the category of injective order-preserving maps and the category of surjective
order-preserving maps, denoted by ∆+ and ∆− respectively. We can generate ∆ by the morphisms di ∈ Hom∆+([n− 1], [n]) and

si ∈ Hom∆+([n], [n− 1]) where di ’skips’ i and si identifies i, i+ 1.
Finally, a simplicial object in a category C is a presheaf on ∆ to C.

Example. We define a simplicial set S• as a set valued presheaf on ∆. We can specify S• by first specifying the corresponding
sets Sn for all n ∈ N, and then for each f ∈ Hom∆([m], [n]), specifying S•f such that the compatability conditions on a functor
are satisfied. Given a simplicial set S•, the set of n-simplices is denoted by Sn := S•[n], the face maps are denoted by
di := S•(d

i) : Sn → Sn−1 for n ≥ 1 and 1 ≤ i ≤ n, and the degeneracy maps are denoted by si := S•(s
i) : Sn−1 → Sn. Given

that a simplicial set is a pre-sheaf S : ∆op → Set, we can define the category of simplicial sets sSet, whose objects are these
presheafs, and natural transformations between them are morphisms. In particular, this means that f : K → S is a morphism of
simplicial sets if fn : Kn → Sn is a collection of maps which commute with the face and degeneracy maps.

Remark. There are a set of algebraic identities that characterize the relationship between di, si and di, sithat are respectively
known as the cosimplicial and simplicial identities.

Simplicial cosimplicial

Category sSet ∆

i < j
didj = dj−1di
disj = sj−1di

djdi = didj−1

sjdi = disj−1

i = j, j + 1 disj = id sjdi = id

i > j sjsi = si−1sj sjsi = si−1sj

i > j + 1 disj = sjdi−1 sjdi = di−1sj

Example. Perhaps the most understandable simplicial set is the terminal simplicial set T which maps all [n] 7→ {∗} = 1, the
terminal object in Set. In this case, the identities hold vacuously, as they are all collapsed to the unique map ! : 1→ 1.

Example. We define the standard n-simplex by the contravariant functor ∆[n] := Hom∆(−, [n]) : ∆ → Set, by [i] 7→
Hom∆([i], [n]).6 In particular, ∆[n] has

(
n
k

)
non-degenrate k−simplices corresponding to the injective order-preserving maps

[i]→ [n], and one non-degenerate n−simplex, in. Given the standard n-simplices ∆[n], we can define the internal Hom functor
∆(−,−) : ∆op ×∆→ sSet. Furthermore, there is a natural isomorphism HomsSet(∆[n],K) ∼= Kn given by f 7→ f(in).

22-categories are not an entirely an unfamiliar notion. If one regards each group as a category of one object, ∗ equipped with a hom-set G := Hom(∗, ∗)
whose elements are invertible, then we could regard a 2-category of groups as a category whose objects are these various Hom(∗, ∗), whose 1-morphisms
are covariant functors between these hom-sets associated with normal group homomorphisms from G→ H, and whose 2-morphisms are simply natural
transformations.
3Elsewhere in the literature, the key insight here is that I is a 1-dimensional opetope, which are the basic ’shapes’ given of k−morphisms, and
consequently, the shapes of the given coherence laws for composition.
4In a category C, an object X is fibrant if the map X → 1 is a fibration.
5i.e. f ∈ Hom∆([n], [m]) ⇐⇒ (∀x, y ∈ [n], x ≤ y ⇒ f(x) ≤ f(y))
6Similarly, for g ∈ Hom∆([j], [k]), ∆[n](g) : Hom∆([k], [n])→ Hom∆([j], [k]) is defined by f 7→ f ◦ g for all f ∈ Hom∆([k], [n])
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Example. To illustrate a rather silly morphism in sSet, consider the trivial map from ∆[m] to T . Conversely, consider the
family of maps from T to ∆[m]. An equally vacuous morphism sends T to ∆[0]. What about f : T → ∆[1]? Well, for each
n ∈ N, fn : Tn → Hom∆([n], [1]), which can be interpreted as specifying an ordered partition of [n], as maps from Tn = 1 = {∗} are
elements. In particular, this means that our choice of f consists of choosing a sequence of fn, which are elements of Hom∆([n], [1]),
such that

∗

Hom∆([n], [1]) Hom∆([n+ 1], [1])

fn fn+1

∆[1](si)

commutes for all n,i and similarly for our face maps. This requirement entails that fn+1 = fn ◦ si and fn = fn+1 ◦ di

Definition. Given the standard simplex ∆[n], there are subsimplicial sets Λi[n] called the (n, i) horns generated by taking the
union of all faces of ∆[n] except for the ith face.7 Hinting at the geometry to come, Λi[n] is obtained from ∆[n] by omitting the
interior of ∆[n] and the interior of the n − 1 dimensional face opposite to i. Whenever i = 0 or i = n, Λi[n] is called an outer
horn. Otherwise, it is an inner horn. Given a simplicial set S, a horn Λi[n] of ∆[n] has a filler if given Λi[n]→ S, there is an
extension e along the inclusion Λi[n] ↪→ ∆[n] such that

Λi[k]

∆[n]

S

e

commute. This horn filling condition can be regarded as guaranteeing that given a horn Λi[n], and the collection of all i − 1
composable i−morphisms, there is an i−morphism (their composite), and an n+ 1 morphism connecting the original n−1 n-cells
and their composite. If S is a simplicial set such that for every horn Λi[n] there exists an extension such that the diagram
commutes, then S satisfies the Kan condition. Given a simplicial set S, if S satisfies the Kan condition, then S is a Kan
complex.

A Kan fibration is a morphism π : S → K of simplicial sets such that for any n ≥ 1 and 0 ≤ k ≤ n, π has the right lifting
property for all horn inclusions, i.e. for every commuting square, there exists a lift from ∆[n]→ S:

Λi[n] S

∆[n] K

0.4. Geometric Realization We first recall the following definition:

Definition. From a categorical point of view, notions of geometry are inextricably linked to notions of topology (or rather,
of topoi, which generalize topologies as being categories of sheaves on sites).8In particular, let us define a covariant functor
| · | : ∆→ Top by sending [n] to the standard topological n-simplex

∆n = {x ∈ [0, 1]n+1 | 1 · x = 1}
and by sending f : [m]→ [n] to a continuous map |f | = ϕ : ∆m → ∆n defined by

x = (x0, . . . , xm) 7→ y = (yj); yj :=
∑
f(i)=j

xi

Since Top is a co-complete category9, there is an unique, induced colimit preserving functor G• : sSet → Top sending each
standard n−simplex ∆[n] to ∆n, with f 7→ ϕ as above. | · | is called the geometric realization functor, in part because it takes
a cellular shape [n] and realizes it as its corresponding standard topological shape, the standard n−simplex. In the literature, the
geometric realization of a simplicial set S• is denoted by |S|.

Example. While giving examples of useful functor, for X ∈ obTop, and n ∈ N, the singular n-simplex in X is a continuous
map σ : ∆n → X, and we write

(SingX)n := HomTop(∆n, X)

for the set of singular n−simplices of X. We can then define a functor Sing : Top→ sSet. It can be verified elsewhere that Sing
is the right adjoint of | · |; in particular, for each topological space X, and each [n] ∈ ∆,

Sing(X)([n]) = HomTop(|∆[n]|, X)

The punch line of all of this is to arrive at the following definition:

Definition. For X,Y ∈ Top or sSet, f : X → Y is a weak equivalence if f induces the following isomorphisms:

7In particular, this means that Λi[n] is the simplicial subset of Λ[i] generated by {d0, . . . , di−1, di+1, . . . , dn}
8Recall that a site for a category C is the pair (C,J ), where J is the Grothendieck topology on C, which is a collection of sieves J (X) for all objects
X ∈ obC subject to certain axioms
9We say a category is co-complete, or has all small colimits, if for every small category S and functor F : S → C a co-limit of F exists in C. As a
dual to the notion of a categorical limit, in abelian categories, co-limits generalize direct sums, and are sometimes referred to as direct limits. We
further recall that where colimits of a diagram exist, they are the co-classifying space for morphisms out of the diagram.
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•
∏

0(f) : Π0(X) ∼=
∏

0(Y )

• for all x ∈ X, and all n ∈ Z+, f induces an isomorphism on the homotopy groups πn(f ;x) : πn(X,x) ∼= πn(Y, f(x)).
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