
Overview of Web Applications and C

Alexander Berenbeim

2016-09-20 Tue

Outline

Mobile App/ Web App/ Desktop

I How do we intend on users to interact with this doodad?

Ideally we would have an application on mobile
devices which:

I sends push notifications to the specific graduate students
who can possibly fill a sub request

I can be updated once one TA accepts the sub request.
I keeps track of who has hours owed

Mobile app development requires platform
commitments

I For now, let’s focus on a desktop and web interface.

User Interface

User Login & User Information Submission

I Structuring user data

Controlling Requests

I Time and Course Request
I Sending Sub-request for targetted TAs with hours

saved/owed by TA making request
I Accepting/Declining Subrequest
I Cancelling Requests
I Confirming Requests (Indicating that someone has

fulfilled the request)

Backend Processes

I Gather/Update work status of Graduate Students
I eg some students may not be able to work as graduate

students for a term, but may be able to later
I Gather/Update Current TA Schedule
I Gather/Solicit/Update Current Course Schedule of TAs
I Gather/Solicit/Update Current Seminar Schedule of TAs
I Maintaining log of hours owed/ saved
I Transferring hours worked/owed
I Contacting only those who meet the request criterion

What Distinguishes A Website from a Web App

I Doesn’t really exist except for static html demarcating a
"web site"

I web apps have functionality similar to software or mobile
app (What does this even mean in principle?)

I HTML5 and App Embedding
I Most web applications are 3-tiered

3-tiered web applications

I A user with a web browser provides inputs to be
processed by an application logic that interacts with a
database, often computing outputs for the user and side
effects updating the data base

The three tiers here are Presentation, Application,
Storage

I Presentation : Browser
I Application : application logic, engine using dynamic web

content
I Storage : Database

What Advantages Are There To Using C Over All
Other Languages For This Project?

I None. Absolutely none
I In fact, C may be one of the least efficient and advisable

languages to pursue app development in for a mobile or
web environment because of the difficulty in writing good
code, even for expert programmers. Even more than
C++, which has zero-overhead for abstractions and has
direct mapping of hardware features from C

I C is good for low level work where data integrity matters
I The assembler is portable and C is good for tiny

executables
I Writing Good C Code Requires Discipline
I Learning Good Programming Practices Cannot Occur In

A Vacuum

The Components of a C Program
Preprocessor Commands

I ex: "#include <stdio.h>" tells the C compiler to include
stdio.h before compiling

Functions
I ex: "printf(. . .)" is a function in C which displays the

string inside

Variables

Statements & Expressions

Comments
I "/ * The * should be next to the / * /"

Some Key Data Types
Void type

Arithmetical types

Enumerated Types

Derived Types

I Pointers
I Arrays
I Structure
I Union
I Function

Void Type

Function returns as void
I if you want to run a function for a side-effect and not

have a value returned

Function arguments as void

I used when a function has no parameters, e.g. "int
rand(void)"

Pointers to void
I used to represent the address of an object but not its type

Pointers

I Physically are a group of cells holding address information
I Careless use of pointers leads to unintelligible C code
I One hallmark of good C code is a conceptually clean use

of pointers
I Pointers are often the only way to express a computation
I Pointers are faster to use than arrays
I The general form a pointer variable declaration "type

*var-name;"
I We use the unary * operator to return the value of a

variable located at the address specified by the operand

Uses of pointers

I Pointer arithmetic
I Array of pointers
I Pointer to Pointer
I Passing pointers to functions
I Returning pointers from functions: in C functions can

return a pointer to the local variable, static variable, and
dynamically allocated memory.

Example: swap(a,b)
I C passes arguments to functions by value, so we can’t

affect the arguments called by a routine
I Pointer arguments enable a function to access and change

objects in the function calling the argument

Bad Good

void swap (int x, int y) void swap(int *px,int *py)
{ {
int temp; int temp;
temp = x; temp = *px;
x=y; *px = *py ;
y = temp; *py = temp ;
} }

I The good program must swap copies of our arguments.

Example: Pointers Arrays

I Suppose we have a private array of character strings, like
the names of months and we want to write a function
that given an integer will return the appropriate month.
Consider:

I * month-name : return name of the n-th month *

char *month _ name(int n) { static char *name[] =
{
"Illegal month", "January", "February",
"March", "April", "May", "June", "July",
"August", "September", "October", "November",
"December"
};
return (n < 1 || n >1) ? name [0] : name [n];
}

Arrays versus pointer arrays

I In C all multidimensional arrays are really one-dimensional
arrays whose elements are arrays

I multidimensional arrays are slower than pointer arrays
I multidimensional arrays are all of fixed length whereas

variable arrays may be of different length

"int a[10][10]" versus "int *b[10]"

I both a[2][4] and b[2][4] are valid, but a has 100 int
sized locations (with a subscript calculation 10r+c used
to find an element a[r][c]), while b stores 10 pointers of
arbitrary length

I Because pointers can be of arbitrary length, care must be
taken to consciously manage resource constraints

Structures
I Arrays can be used to define a type of variables with

different items of the same kind
I Structures can be used to combine data items of different

kinds
I Structures can be passed as a function argument like

variables or pointers
I We’ll build our program around pointers and structures

Structure format
struct [structure tag]{
member definition;
member definition;
. . .
member definition;
} [one or more structure variables];

Example:

struct Paper {
char title[100];
char author[100];
char subject[100];
} thesis;

The structure tag for Paper is optional

We access members of a structure with the member
access operator (.)

I "thesis.title"

Example

struct TA {
char name[100];
char *courses[6];
char *seminars[6];
char *classes[6];
char email[100];
};

Pointers to structure

I We can define a pointer to a structure the same way we
define a pointer to other variables "struct Paper *struct
_ pointer;"

I We can find the address of a structure variable using the
unary ’&’ operator, "struct _ pointer = &paper1;"

I We can access the members of a structure using a pointer
to that structure with the "->" operator, "struct _
pointer->title"

Example: Pointers to Structure

#include <stdio.h>
#include <string.h>
/ * function declaration * /
void printPaper (struct Paper *paper);
int main () {
struct Paper paper1; / * Declare paper1 of type Paper * /
struct Paper paper2; / * Declare paper2 of type Paper * /
/ * paper1 specification * /
strcpy (paper1.title, "Web Apps");
strcpy (paper1.author, "Alex");
strcpy (paper1.subject, "Getting a Job");
/ * paper2 specification * /
strcpy (paper2.title, "Basics of C");
strcpy (paper2.author, "Berenbeim");
strcpy (paper2.subject, "Doing a Job");
/ * print paper1 info by passing address of paper1 */
printPaper(&paper1);
/ * print paper2 info by passing address of paper2 */
printPaper(&paper2);
return 0;
}

Example: Pointers to Structure (continued)

void printPaper(struct Paper *paper) {
printf("Paper title : %s", paper -> title);
printf("Paper author : %s", paper -> author);
printf("Paper subject : %s", paper -> subject);
}

Once compiled and executed, this code produces:
Paper title : Web Apps
Paper author : Alex
Paper subject : Getting a Job
Paper title : Basics of C
Paper author : Berenbeim
Paper subject : Doing a Job

