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TODO Fundamental Category Theory

o Categories
e Functors (and Fibrations in paticular)
@ Natural Transformations

@ Yoneda Lemma
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A Motivating Object: Posets

@ Given a set D, a partial order <C D x D satisfies:

Q reflexivity
@ antisymmetry
@ transitivity

e We say (D, <) above is a poset

o If D= (D,<) is a poset, we say a non-empty X Cy D is a
directed set if for all x, y € D there exists z € X such that
x<zANy<z

e (D, <) is a complete partial order (CPO) if

@ there is a least (or bottom) element L € D such that
Vxe D, 1 <x
@ For every X Cy4 D, a *supremum$ VX € D exists

e (D, <) is a complete lattice if for every X C D the supremum
VX exists in D.
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Examples of

(L, <) is vacuously a complete lattice

({L, T}, <) such that L < T is a complete lattice

The class of ordinal numbers is a complete lattice

Powersets

For any set X, the power set of X,P(P)(X) is a complete lattice
under inclusion
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Scott Topology

Given some CPO D, let ©(D) be a topology on D such that
Ue©o(D)

Q@ ifxeUand x<y,thenye U

Q if X Cyand vX € U, then X AU #0

Such a topology, ©(D) is the Scott topology

For any x € D, set Uy :={z € D | z £ x} is an open set.

In general, D is Tg but not T by considering x # y and
x £ y and comparing Uy, U,.
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Prop: f : Dy — D, is continuous iff f(VX) = Vf(X) for all

X Cq Dy

e We'll show that f is monotone first

e If f is continuous, towards a contradiction suppose that
x <1y and f(x) £2 f(y). Then f(x) € Ug(,) and therefore
x € f~1(Ug(yy). Since f~1(Ug(,y) is open, by the definition of
the Scott topology, y € Ug(,), which is a contradiction. Hence
f is monotone.

@ The forward direction is proved by contradiction from the
assumption that f(V.X) X/f(X).

@ In the reverse direction, given x <y = f(x) < f(y), it follows
y = xVy and thus f(y) = f(x) V f(y) so f(x) < f(y), thus if
U e @(Dl), then f_l(U) € @(DQ)
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Categorical Notions: Categories

@ A category C consists of two classes:

@ A class of objects denoted |C|
@ A class of morphisms denoted C
© A pair of maps Dom, Cod : C — |C| such that for every f € C,
f € C(Dom(f),Cod(f)), the class of morphisms from X = Domf
to Y = Codf
@ A composition operation typically denoted by o (and
diagrammatically denoted by ; ) such that morphism classes
denoted C(X, Y) with X, Y € |C| satisfying the following
axioms:
@ every object X € |C|, there is 1x € C(X, X).
@ forevery f € C(X,Y),g € C(Y,Z) and he C(Z, W),

lyof=f="foly, ho(gof)=(hog)of
(5]
o If C(X,Y) is a set for all objects X, Y € |C|, then C is locally
small

Alexander Berenbeim Motivations For Homotopy Type Theory



Categorical Notions: Examples of Categories

The empty (or initial) category has no objects and no morphisms,
and so it vacuosly satisfies the categorical axioms. Moreover
0 = |0] := {} as ordinary notions of sets.

Example 1

The unit (or final) category consists of a single object * and has
only the identity map 1,.

_>
Example o7 — o3

This category consists of two unlabelled objects and two morphisms
s, t from one bullet to the other in addition to the unlabelled
identity maps
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Categorical Notions: Examples of Categories

Example FinSets

This category consists of the class of finite abstract sets with n
elements denoted by [n] and the class of all functions f : [n] — [m]
for each n,m € N.

Example Sets

|Sets| consists of the class of (small) sets in your favorite set theory,
and the class of morphisms Sets consists of the sets Sets(X, Y)
which consist of set functions f : X — Y, for every pair of sets

X, Y € |Sets|.

Example Sets™

|Sets™| consists of all f: X — Y, for every X, Y € |Sets|; given
f:X—Yand g:Z— W, a morphism in Sets™ are pairs of set
functions (hg, hf) such that hfo f = g o hg
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Categories: More Examples

@ Any poset (P, <) may be regarded as a category, with < being

the only morphism in each morphism class P(x, y).

@ We can form the category of posets, Pos whose objects are
posets, and whose morphisms are order preserving maps

The category of complete partial orders is a subcategory of Pos
whose objects are complete partial orders and whose morphisms are
the order preserving maps.

Let X be a topological space with an arbitrary topology ©(X). The
open sets are the objects in this category, and morphisms are given
by inclusion C.
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Categories: Graphs

e Agraph G :=(V,&,0,7), with o, 7: & = V.
e Categorically, £ = Cand V = [(]

@ Each category may be naturally viewed as a graph. We may
also form a category Grph whose objects are graphs, and
whose arrows are graph morphisms.
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Categories: Pred

Not only are sets categories, but we can treat predicates on sets as
a category as follows:

© objects are pairs (/, X) such that X C /. We say that "X is a
predicate of Y" and write X (/) for i € X. This choice of
notation is intended to emphasize that i € | may be chosen as
a free variable

@ morphisms (/, X) — (J, Y) are functions u € Sets(/, J) such
that for all i € 1, X(i) implies Y (u(/))
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Categories: Rel

Just as we may turn predicates on sets into a category, we may also
turn relations on sets into a category. We present the category of
binary relations Rel as follows:

@ objects are pairs (/, R) where | € |Sets| and RI x |

@ morphisms (I, R) — (J,S) are set functions u € Sets(/, J)
such that for all i,j € I, R(i,j) implies that S(u(/), u(j))
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Categories: Grp

@ Objects are groups G, and morphisms are group
homomorphisms f, e.g. f(g152) = f(g1)f(&2)

@ The category of abelian groups Ab is defined likewise.

e Given an abelian group G, EndG := Ab(G, G) can be used to
define a ring, with 0: g +— 0 and 1: g — g, addition given
naturally and multiplication given by composition o i.e. for all
x,y,z € End(G) and g, h€ G

Q (x+y)(g) =x(g) +y(g)
9 x(g + h) = x(g) + x(h)

O x(y(g)) = (xoy)(g)

Q ((xoy)oz)(g) =(xo(yoz))(g) =x((y o 2)(8)) =

x(y(z(g))) = (x o y)(z(g)) = ((x o y) © 2)(g)
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Categories: CRing

@ Objects are commutative rings R, and morphisms are ring
homomorphisms f, e.g.

f(ax+ by) = f = (ax) + f(by) = f(a)f(x) + f(b)f(y)
@ Any R € CRing can be used to define a category R-mod.

@ Recall that an R-module M is an abelian group M and an

R-action defined by p € CRing(R, End(M)) such that for any
re Rand me M, rm:= p(r)(m).
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Categories: R-Mod

@ Objects are (left) R-modules M and morphisms are module
homomorphisms (e.g. f : M — N such that
firx+y)=Ff(rx)+f(y) =rf(x)+f(y))

@ An (R,S)-module or bimodule is an abelian group M which is a

left R-module and a right S-module such that for all r € R and
seSandme M

(rm)s = r(ms)
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Algebraic Aside

CLAIM If M, N are R-modules, and M is an $(R,S)$-module, then
R-mod(M, N) has an $S$-module structure.
PROOF Vf € R-mod(M, N)Vs, t € SVme M

(s-s f)(rm) = f((rm)s) = f(r(ms)) = rf(xs)

and
(st-f)(m)=f(mst)=(t-f)(xs)=s-(t-f)(x)

follows by setting (s - f)m := f(ms), i.e. s-f is R-linear and a ring
action and hence R-mod(M, N) may be regarded as an S-module.
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Categorical Notions: Functors

(Covariant) Functors F : C — D are maps between C and D such
that

e for all X € |C|, F(X) € |D|
e forall f € C, F(f) e D
e for all X € |C| and composable f, g € C,
F(1x) = Lrx)
and F(gof)=F(g)oF(f)

The identity functor takes X € |C| to X and f € C to f

We may consider any set X to be a functor X' : 1 — Sets.
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Functor Properties

e A functor F : C — D is full when for every X, Y € |C|, the
mapping on arrows X', : C(X,)) — D(F(X),F())) is
surjective

e F is faithful if each Fx y is injective

e CCD,ie. Cisasubcategory of D, if |C| C |D| and
C(X,Y) C D(X,Y) for all X,Y € |C|, and composition in C
is a restriction of composition in D

@ A subcategory C C D is broad when |C| = |D]|.
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Categories: Fibred categories

@ Given a functor p : E — B, we can define a new category
with respect to every object in the image of p. Let | € |B|, and
define E; := p~1(/) such that

@ objects are X € |E| such that p(X) =1/
@ morphisms are £ € E(X, Y) such that p(f) =1, € B

@ E, is the fibre category over |

e We say that X € |E/| is above | and similarly f € E such that
p(f) = u is said to be above u.
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Functors: Fibrations

@ Given a functor p: E — B, we say f € E is Cartesian over and
u e B(1,J) if p(f) = u and for every g € E(Z, Y) such that
p(g) = uow for some w € B(p(Z), 1) there is a uniquely
determined h € E(Z, X) above w with foh =g

o f € E(X,Y) is a Cartesian if it is Cartesian over its underlying
map p(f).

e pis a fibration if for every Y € |E| and u € B(/, p(Y)) there is
a cartesian morphism f € E(X, Y') over u

@ Practically understood, fibrations capture indexing and
substitution
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Fibrations Example

Let / € |Sets|.

@ The fibre category Pred; is the subcategory of predicates on /
identified with the poset category (P(P)(/), C) ordered by
inclusion

e Given any u € Sets(/, J) we can define a substitution functor
u* :P(P)(J) — P(P)(/) via
(YChH)—{ilu()eY}CI)

e lfu=m:1xJ— 1, then * is called weakening as it is given
by X — {(i,j) | i € X Aj € J} by adding a dummy variable
Jj € J to the predicate X

o lfu=A:1—1x1, then A* is called contraction as it is
given by P(P)(I x )2 Y — {ie | (i,i) € Y}, and thus
replaces two variables of | with a single variable.
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Functors: Examples

e Continuing our work on Pred, we can also define quantifiers as
follows: Forany X C [ x J

o A(X):={iel|3jeJ (ij)e X} which is a subset of /
o V(X):={iel|VjeJ,(i,j) € Y) which is also a subset of /
e The assignments given by the quantifiers are functorial on
P(P)(I x J) = P(P)(!)
@ We can also capture the notion of equality using the diagonal
A by defining for
Eq(X) =AX)={(i,j) | I xI]|i=jNieX}
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Functors: Examples

Continuing our work on Pred and Rel we can also catpure notions
of truth, comprehension, and quotients via functors

@ (Truth) We can also capture the notion of truth by defining
T : Sets — Pred by assignign each set X the 'truth’ predicate
X C X on X.

o (Comprehension) Let {—} : Pred — Sets be defined by sending
(XChHh—X

o (Quotients) Let Q : Rel — Sets be defined by taking R — I/R
where R is the least equivalence relation = on [ such that
R C=.

@ The quotient construction is formed by pullbacks
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Functors: Examples

@ A graph and category are small if the collection of objects and
arrows are both sets
o Every small graph G may be viewed as a functor from o1 = e
to Sets such that
o G(e1) :=& € Sets
o G(e2):V € Sets
o g(s)=0:&—=VandG(t)=7:E-V
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Functors: Examples

@ Let Grp be the category of groups. Let U : Grp — Sets the
functor which sends each group to its underlying set and
homomorphism to its underlying set function. This is called
the forgetful functor.

@ We could also let Uf : Pred — Sets be defined naturally by
sending each predicate to its underlying set.

o If Cis locally small, we can define a contravariant functor
C(—, X) which sends objects Y to the set of arrows C(Y, X)
and arrows f : Y — Z to C(f,1x) : C(Z,X) — C(Y, X)
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The Dual Functor

For any category C, there is a functor —°P : C — C which fixes
|C| pointwise, and sends f € C(X, Y) to f? € C(Y, X)

In particular for any (gof): X =Y — Z,
(gof)P=fPogP.7Z—Y X

Intuitively, this functor reverses the direction of the arrows in
each commuting diagram in a category by reversing the source
and targets of each map.

A functor from A°P to B is called a contravariant functor
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Representative Functors
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Functors: Extension By Scalars, pt 1

Given f € CRing(R,S), we may define

f' - R-Mod — S-Mod

by setting f'(M) := R-Mod(S, M), with S-action sa(s’) := a(ss)
for each a € R-Mod(S, M).
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Functors: Restriction By Scalars

o Let f € CRing(R,S) and N € |S-mod|. We define

restriction by scalars to be the functor
f. : S-mod — R-mod

which fixes M € |S-mod| by pre-composing the S-action o on M
with f : R — S, so that M is now an R-module, i.e. rm:= f(r)m
where f(r) € EndM.

@ This is covariantly functorial, and when f is injective, we may
naturally view R as a subring of S, whence the name
restriction by scalars.

@ Since kernels and images of module homomorphisms are the
same regardless of the base ring, restriction by scalars is
trivially exact.

e Siis a natural R-module, with the action of r on S given by
the multiplication of f(r)s in S.
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Functors: Tensors

@ Suppose that M, N € |R-Mod|, then the tensor product
M ®@gr N is an R-module given by an R-bilinear map
®: M x N— M®pg N such that every other R-bilinear
@ : M x N — P will factor uniquely through M @ N, e.g.

E“(/_)a (()0: (/_)O(X))

e Forall N € |R-Mod|, R®g N = N, as every R-bilinear
R x N — P factors through N by setting ®@(r, n) = rn.

o By the uniqueness property of universal objects, we have our
natural isomorphism N 2 R®gr N

@ We can define a covariant functor $\
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Lemma: If M € |R-Mod| and N is (R,S)-bimodule, and
P € |S-Mod|, then

R-Mod(M, S-Mod(N, P)) = S-Mod(M & N, P)

e For every a € R-Mod(M, S-Mod(N, P)), there is a
¢ : M x N — P determined via ¢(m,—) : a(m)
@ Such ¢ are $Z%-bilinear, and forany re R me M,ne N

o(rm, n) = a(rm,)(n) =1 ra(m)(n) = a(m)(rn) = ©(m, rn)
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Functors: Extension By Scalars, pt 2
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Functors and Comma Categories

Given F:D—C$ and an object C € |C|, we denote by A/F the
comma category whose

@ objects are the arrows f : C — F(Y'), denoted by (f, Y)

@ morphisms are the arrows h € D(Y, Z) such that
F(hyof=f"ie (€A/F({(f,Y),(f,2))

o If F:=1c, then C/ooc := C/C.

@ Denote by $C/C:=(C/C°P)°P. This is the co-slice category.
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Isomorphism

@ Inside categories, objects are unique up to *isomorphism.

@ An arrow f € C(X, Y) is an isomorphism if there is a
g€ C(Y,X)suchthat gof =1x and fog =1y; we say X
is isomorphic to Y if such f, g exist.

o lf F:C—=Dand G:D — Csuch that FoG = 1p and
G o F = 1¢, then C is isomorphic to D
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Presheaves
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Categorical Notions: Natural Transformation

+Given two functors F,G : C — D, a natural transformation
n:F = G is a family of morphisms $(1x)|c| indexed by [C|, such
that for each f € C(X, YY),

G(f) onx =ny o F(f)

@ Given any two categories C, D, we can define a functor
category D¢ whose objects are functor F : C — D and whose
morphisms are natural transformations
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Revisiting Grph

Let Grph be the category of graphs

@ objects are functors G = (V, €, 0, 7) such that V(G) are the
vertices of G and £(G) are the directed edges;

@ morphisms graph homomorphisms F : G = H are pairs of
mappings
o F:V(G) = V(9)

e F:&(G) — £(G) such that for f : X — Y,
F(f) - F(X) = F(Y).
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Yoneda Lemma: If Cis locally small, and F : C°%° — Sets,

then Sets®” (C(—, X), F) = F(X)

Denote C(—, X) := hx. For any n: hx = F, we obtain

77X(1X) € .7:(X)

On the other hand, given x € F(X), we obtain natural
transformation X : hx — X by setting X : C(Y, X) = F(X) such
that g: Y — X is sent to F(g)(x).

These maps are inverse to one another.
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