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TODO Fundamental Category Theory

Key Ideas

Categories
Functors (and Fibrations in paticular)
Natural Transformations
Yoneda Lemma
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A Motivating Object: Posets

Given a set D, a partial order ≤⊆ D × D satisfies:
1 reflexivity
2 antisymmetry
3 transitivity

We say (D,≤) above is a poset
If D ≡ (D,≤) is a poset, we say a non-empty X ⊆d D is a
directed set if for all x , y ∈ D there exists z ∈ X such that
x ≤ z ∧ y ≤ z

(D,≤) is a complete partial order (CPO) if
1 there is a least (or bottom) element ⊥ ∈ D such that
∀x ∈ D,⊥ ≤ x

2 For every X ⊆d D, a *supremum$ ∨X ∈ D exists

(D,≤) is a complete lattice if for every X ⊆ D the supremum
∨X exists in D.
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Examples of complete lattices

Null
(⊥,≤) is vacuously a complete lattice

Bool
({⊥,>},≤) such that ⊥ ≤ > is a complete lattice

The class of ordinal numbers is a complete lattice

Powersets
For any set X , the power set of X , P(P)(X ) is a complete lattice
under inclusion
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Scott Topology

Given some CPO D, let Θ(D) be a topology on D such that
U ∈ Θ(D)

1 if x ∈ U and x ≤ y , then y ∈ U
2 if X ⊆d and ∨X ∈ U, then X ∧ U 6= ∅

Such a topology, Θ(D) is the Scott topology
For any x ∈ D, set Ux := {z ∈ D | z 6≤ x} is an open set.
In general, D is T0 but not T1 by considering x 6= y and
x 6≤ y and comparing Ux ,Uy .
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Prop: f : D1 → D2 is continuous iff f (∨X ) = ∨f (X ) for all
X ⊆d D1

We’ll show that f is monotone first
If f is continuous, towards a contradiction suppose that
x ≤1 y and f (x) 6≤2 f (y). Then f (x) ∈ Uf (y) and therefore
x ∈ f −1(Uf (y)). Since f −1(Uf (y)) is open, by the definition of
the Scott topology, y ∈ Uf (y), which is a contradiction. Hence
f is monotone.
The forward direction is proved by contradiction from the
assumption that f (∨X ) 6 ∨f (X ).
In the reverse direction, given x ≤ y ⇒ f (x) ≤ f (y), it follows
y = x ∨ y and thus f (y) = f (x)∨ f (y) so f (x) ≤ f (y), thus if
U ∈ Θ(D1), then f −1(U) ∈ Θ(D2)
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Categorical Notions: Categories

A category C consists of two classes:
1 A class of objects denoted |C|
2 A class of morphisms denoted C
3 A pair of maps Dom, Cod : C→ |C| such that for every f ∈ C,

f ∈ C (Dom(f ), Cod(f )), the class of morphisms from X = Domf
to Y = Codf

4 A composition operation typically denoted by ◦ (and
diagrammatically denoted by ; ) such that morphism classes
denoted C(X ,Y ) with X ,Y ∈ |C| satisfying the following
axioms:

1 every object X ∈ |C|, there is 1X ∈ C(X ,X ).
2 for every f ∈ C(X ,Y ), g ∈ C(Y ,Z) and h ∈ C(Z ,W ),

1Y ◦ f = f = f ◦ 1X , h ◦ (g ◦ f ) = (h ◦ g) ◦ f

5

If C(X ,Y ) is a set for all objects X ,Y ∈ |C|, then C is locally
small
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Categorical Notions: Examples of Categories

Example 0

The empty (or initial) category has no objects and no morphisms,
and so it vacuosly satisfies the categorical axioms. Moreover
0 = |0| := {} as ordinary notions of sets.

Example 1

The unit (or final) category consists of a single object ∗ and has
only the identity map 1∗.

Example •1
→→ •1

This category consists of two unlabelled objects and two morphisms
s, t from one bullet to the other in addition to the unlabelled
identity maps
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Categorical Notions: Examples of Categories

Example FinSets
This category consists of the class of finite abstract sets with n
elements denoted by [n] and the class of all functions f : [n]→ [m]
for each n,m ∈ N.

Example Sets

|Sets| consists of the class of (small) sets in your favorite set theory,
and the class of morphisms Sets consists of the sets Sets(X ,Y )
which consist of set functions f : X → Y , for every pair of sets
X ,Y ∈ |Sets|.

Example Sets→

|Sets→| consists of all f : X → Y , for every X ,Y ∈ |Sets|; given
f : X → Y and g : Z →W , a morphism in Sets→ are pairs of set
functions (hg , hf ) such that hf ◦ f = g ◦ hg
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Categories: More Examples

Posets
Any poset (P,≤) may be regarded as a category, with ≤ being

the only morphism in each morphism class P(x , y).
We can form the category of posets, Pos whose objects are
posets, and whose morphisms are order preserving maps

CPO
The category of complete partial orders is a subcategory of Pos
whose objects are complete partial orders and whose morphisms are
the order preserving maps.

Θ(X )

Let X be a topological space with an arbitrary topology Θ(X ). The
open sets are the objects in this category, and morphisms are given
by inclusion ⊆.
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Categories: Graphs

A graph G := (V, E , σ, τ), with σ, τ : E → V.
Categorically, E ≡ C and V ≡ |C|
Each category may be naturally viewed as a graph. We may
also form a category Grph whose objects are graphs, and
whose arrows are graph morphisms.
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Categories: Pred

Not only are sets categories, but we can treat predicates on sets as
a category as follows:

1 objects are pairs (I ,X ) such that X ⊆ I . We say that "X is a
predicate of Y" and write X (i) for i ∈ X . This choice of
notation is intended to emphasize that i ∈ I may be chosen as
a free variable

2 morphisms (I ,X )→ (J,Y ) are functions u ∈ Sets(I , J) such
that for all i ∈ I , X (i) implies Y (u(i))
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Categories: Rel

Just as we may turn predicates on sets into a category, we may also
turn relations on sets into a category. We present the category of
binary relations Rel as follows:

1 objects are pairs (I ,R) where I ∈ |Sets| and RI × I

2 morphisms (I ,R)→ (J,S) are set functions u ∈ Sets(I , J)
such that for all i , j ∈ I , R(i , j) implies that S(u(i), u(j))
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Categories: Grp

Objects are groups G , and morphisms are group
homomorphisms f , e.g. f (g1g2) = f (g1)f (g2)

The category of abelian groups Ab is defined likewise.
Given an abelian group G , EndG := Ab(G ,G ) can be used to
define a ring, with 0 : g 7→ 0 and 1 : g 7→ g , addition given
naturally and multiplication given by composition ◦ i.e. for all
x , y , z ∈ End(G ) and g , h ∈ G

1 (x + y)(g) = x(g) + y(g)
2 x(g + h) = x(g) + x(h)
3 x(y(g)) = (x ◦ y)(g)
4 ((x ◦ y) ◦ z)(g) = (x ◦ (y ◦ z))(g) = x((y ◦ z)(g)) =

x(y(z(g))) = (x ◦ y)(z(g)) = ((x ◦ y) ◦ z)(g)
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Categories: CRing

Objects are commutative rings R , and morphisms are ring
homomorphisms f , e.g.
f (ax + by) = f = (ax) + f (by) = f (a)f (x) + f (b)f (y)

Any R ∈ CRing can be used to define a category R-mod.
Recall that an R-module M is an abelian group M and an
R-action defined by ρ ∈ CRing(R,End(M)) such that for any
r ∈ R and m ∈ M, rm := ρ(r)(m).
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Categories: R-Mod

Objects are (left) R-modules M and morphisms are module
homomorphisms (e.g. f : M → N such that
f (rx + y) = f (rx) + f (y) = rf (x) + f (y) )
An (R,S)-module or bimodule is an abelian group M which is a
left R-module and a right S-module such that for all r ∈ R and
s ∈ S and m ∈ M

(rm)s = r(ms)
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Algebraic Aside

CLAIM If M,N are R-modules, and M is an $(R,S)$-module, then
R-mod(M,N) has an $S$-module structure.
PROOF ∀f ∈ R-mod(M,N)∀s, t ∈ S∀m ∈ M

(s ·S f )(rm) = f ((rm)s) = f (r(ms)) = rf (xs)

and
(st · f )(m) = f (mst) = (t · f )(xs) = s · (t · f )(x)

follows by setting (s · f )m := f (ms), i.e. s · f is R-linear and a ring
action and hence R-mod(M,N) may be regarded as an S-module.
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Categorical Notions: Functors

(Covariant) Functors F : C→ D are maps between C and D such
that

for all X ∈ |C|, F(X ) ∈ |D|
for all f ∈ C, F(f ) ∈ D
for all X ∈ |C| and composable f , g ∈ C,

F(1X ) = 1F(X )

and F(g ◦ f ) = F(g) ◦ F(f )

Example

The identity functor takes X ∈ |C| to X and f ∈ C to f

Example
We may consider any set X to be a functor X : 1→ Sets.
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Functor Properties

A functor F : C→ D is full when for every X ,Y ∈ |C|, the
mapping on arrows X ,Y : C(X ,Y)→ D(F(X ),F(Y)) is
surjective
F is faithful if each FX ,Y is injective
C ⊆ D, ie. C is a subcategory of D, if |C| ⊆ |D| and
C(X ,Y ) ⊂ D(X ,Y ) for all X ,Y ∈ |C|, and composition in C
is a restriction of composition in D
A subcategory C ⊆ D is broad when |C| = |D|.
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Categories: Fibred categories

Given a functor p : E→ B, we can define a new category

with respect to every object in the image of p. Let I ∈ |B|, and
define EI := p−1(I ) such that

1 objects are X ∈ |E| such that p(X ) = I

2 morphisms are f ∈ E(X ,Y ) such that p(f ) = 1I ∈ B

EI is the fibre category over I
We say that X ∈ |EI | is above I and similarly f ∈ E such that
p(f ) = u is said to be above u.
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Functors: Fibrations

Given a functor p : E→ B, we say f ∈ E is Cartesian over and
u ∈ B(I , J) if p(f ) = u and for every g ∈ E(Z ,Y ) such that
p(g) = u ◦ w for some w ∈ B(p(Z ), I ) there is a uniquely
determined h ∈ E(Z ,X ) above w with f ◦ h = g

f ∈ E(X ,Y ) is a Cartesian if it is Cartesian over its underlying
map p(f ).
p is a fibration if for every Y ∈ |E| and u ∈ B(I , p(Y )) there is
a cartesian morphism f ∈ E(X ,Y ) over u
Practically understood, fibrations capture indexing and
substitution
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Fibrations Example

Let I ∈ |Sets|.
The fibre category PredI is the subcategory of predicates on I
identified with the poset category (P(P)(I ),⊆) ordered by
inclusion
Given any u ∈ Sets(I , J) we can define a substitution functor
u∗ : P(P)(J)→ P(P)(I ) via

(Y ⊆ J) 7→ ({i | u(i) ∈ Y } ⊆ I )

If u = π : I × J → I , then π∗ is called weakening as it is given
by X 7→ {(i , j) | i ∈ X ∧ j ∈ J} by adding a dummy variable
j ∈ J to the predicate X

If u = ∆ : I → I × I , then ∆∗ is called contraction as it is
given by P(P)(I × I ) 3 Y 7→ {i ∈ I | (i , i) ∈ Y }, and thus
replaces two variables of I with a single variable.
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Functors: Examples

Continuing our work on Pred, we can also define quantifiers as
follows: For any X ⊆ I × J

∃(X ) := {i ∈ I | ∃j ∈ J, (i , j) ∈ X} which is a subset of I
∀(X ) := {i ∈ I | ∀j ∈ J, (i , j) ∈ Y ) which is also a subset of I
The assignments given by the quantifiers are functorial on
P(P)(I × J)→ P(P)(I )

We can also capture the notion of equality using the diagonal
∆ by defining for
Eq(X ) := ∆(X ) = {(i , j) | I × I | i = j ∧ i ∈ X}
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Functors: Examples

Continuing our work on Pred and Rel we can also catpure notions
of truth, comprehension, and quotients via functors

(Truth) We can also capture the notion of truth by defining
> : Sets→ Pred by assignign each set X the ’truth’ predicate
X ⊆ X on X .
(Comprehension) Let {−} : Pred→ Sets be defined by sending
(X ⊆ I ) 7→ X

(Quotients) Let Q : Rel→ Sets be defined by taking R 7→ I/R̄
where R̄ is the least equivalence relation ≡ on I such that
R ⊆≡.
The quotient construction is formed by pullbacks
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Functors: Examples

A graph and category are small if the collection of objects and
arrows are both sets
Every small graph G may be viewed as a functor from •1

→→ •2
to Sets such that

G(•1) := E ∈ Sets
G(•2) : V ∈ Sets
G(s) = σ : E → V and G(t) = τ : E → V
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Functors: Examples

Let Grp be the category of groups. Let U : Grp→ Sets the
functor which sends each group to its underlying set and
homomorphism to its underlying set function. This is called
the forgetful functor.
We could also let U : Pred→ Sets be defined naturally by
sending each predicate to its underlying set.
If C is locally small, we can define a contravariant functor
C(−,X ) which sends objects Y to the set of arrows C(Y ,X )
and arrows f : Y → Z to C(f , 1X ) : C(Z ,X )→ C(Y ,X )
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The Dual Functor

For any category C, there is a functor −op : C→ C which fixes
|C| pointwise, and sends f ∈ C(X ,Y ) to f op ∈ C(Y ,X )

In particular for any (g ◦ f ) : X → Y → Z ,
(g ◦ f )op = f op ◦ gop : Z → Y → X

Intuitively, this functor reverses the direction of the arrows in
each commuting diagram in a category by reversing the source
and targets of each map.
A functor from Aop to B is called a contravariant functor
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Representative Functors
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Functors: Extension By Scalars, pt 1

Given f ∈ CRing(R,S), we may define

f ! : R-Mod→ S-Mod

by setting f !(M) := R-Mod(S ,M), with S-action sα(s ′) := α(ss ′)
for each α ∈ R-Mod(S ,M).
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Functors: Restriction By Scalars

Let f ∈ CRing(R,S) and N ∈ |S-mod|. We define

restriction by scalars to be the functor

f∗ : S-mod→ R-mod

which fixes M ∈ |S-mod| by pre-composing the S-action σ on M
with f : R → S , so that M is now an R-module, i.e. rm := f (r)m
where f (r) ∈ EndM.

This is covariantly functorial, and when f is injective, we may
naturally view R as a subring of S , whence the name
restriction by scalars.
Since kernels and images of module homomorphisms are the
same regardless of the base ring, restriction by scalars is
trivially exact.
S is a natural R-module, with the action of r on S given by
the multiplication of f (r)s in S .
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Functors: Tensors

Suppose that M,N ∈ |R-Mod|, then the tensor product
M ⊗R N is an R-module given by an R-bilinear map
⊗ : M × N → M ⊗R N such that every other R-bilinear
ϕ : M × N → P will factor uniquely through M ⊗R N, e.g.

∃!ϕ̄, (ϕ = ϕ̄ ◦ ⊗)

For all N ∈ |R-Mod|, R ⊗R N ∼= N, as every R-bilinear
R × N → P factors through N by setting ⊗(r , n) = rn.
By the uniqueness property of universal objects, we have our
natural isomorphism N ∼= R ⊗R N

We can define a covariant functor $\
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Lemma: If M ∈ |R-Mod| and N is (R,S)-bimodule, and
P ∈ |S-Mod|, then
R-Mod(M , S-Mod(N ,P)) ∼= S-Mod(M ⊗R N ,P)

For every α ∈ R-Mod(M, S-Mod(N,P)), there is a
ϕ : M × N → P determined via ϕ(m,−) : α(m)

Such ϕ are $Z$-bilinear, and for any r ∈ R,m ∈ M, n ∈ N

ϕ(rm, n) = α(rm, )(n) =1 rα(m)(n) = α(m)(rn) = ϕ(m, rn)
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Functors: Extension By Scalars, pt 2
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Functors and Comma Categories

Given F :D→C$ and an object C ∈ |C|, we denote by A/F the
comma category whose

objects are the arrows f : C → F(Y ), denoted by (f ,Y )

morphisms are the arrows h ∈ D(Y ,Z ) such that
F(h) ◦ f = f ′, i.e. 〈 ∈ A/F((f ,Y ), (f ,Z ))

If F := 1C, then C/∞C := C/C.
Denote by $C/C:=(C/Cop)op. This is the co-slice category.
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Isomorphism

Inside categories, objects are unique up to *isomorphism.
An arrow f ∈ C(X ,Y ) is an isomorphism if there is a
g ∈ C(Y ,X ) such that g ◦ f = 1X and f ◦ g = 1Y ; we say X
is isomorphic to Y if such f , g exist.
If F : C→ D and G : D→ C such that F ◦ G = 1D and
G ◦ F = 1C, then C is isomorphic to D
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Presheaves
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Categorical Notions: Natural Transformation

+Given two functors F ,G : C→ D, a natural transformation
η : F ⇒ G is a family of morphisms $(ηx)|C| indexed by |C|, such
that for each f ∈ C(X ,Y ),

G(f ) ◦ ηX = ηY ◦ F(f )

Given any two categories C,D, we can define a functor
category DC whose objects are functor F : C→ D and whose
morphisms are natural transformations
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Revisiting Grph

Let Grph be the category of graphs
objects are functors G = (V, E , σ, τ) such that V(G) are the
vertices of G and E(G) are the directed edges;
morphisms graph homomorphisms F : G ⇒ H are pairs of
mappings
F : V(G)→ V(G)

F : E(G)→ E(G) such that for f : X → Y ,
F (f ) : F (X )→ F (Y ).
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Yoneda Lemma: If C is locally small, and F : Cop → Sets,
then SetsC

op

(C(−,X ),F) ∼= F(X )

Denote C(−,X ) := hX . For any η : hX ⇒ F , we obtain
ηX (1X ) ∈ F(X ).
On the other hand, given x ∈ F(X ), we obtain natural
transformation x̌ : hX → X by setting x̌ : C(Y ,X )⇒ F(X ) such
that g : Y → X is sent to F(g)(x).
These maps are inverse to one another.
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