Motivations For Homotopy Type Theory

Alexander Berenbeim

Today

Alexander Berenbeim Motivations For Homotopy Type Theory

Alexander Berenbeim Motivations For Homotopy Type Theory

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

TODO Fundamental Category Theory

Key Ideas

- Categories
- Functors (and Fibrations in paticular)
- Natural Transformations
- Yoneda Lemma

- Given a set *D*, a partial order $\leq \subseteq D \times D$ satisfies:
 - reflexivity
 - antisymmetry
 - Itransitivity
- We say (D, \leq) above is a poset
- If D ≡ (D, ≤) is a poset, we say a non-empty X ⊆_d D is a directed set if for all x, y ∈ D there exists z ∈ X such that x ≤ z ∧ y ≤ z
- (D, \leq) is a complete partial order (CPO) if
 - there is a least (or bottom) element $\bot \in D$ such that $\forall x \in D, \bot \leq x$
 - **2** For every $X \subseteq_d D$, a *supremum\$ $\forall X \in D$ exists
- (D, ≤) is a complete lattice if for every X ⊆ D the supremum ∨X exists in D.

Null

 (\bot,\leq) is vacuously a complete lattice

Bool

 $(\{\bot,\top\},\leq)$ such that $\bot\leq\top$ is a complete lattice

The class of ordinal numbers is a complete lattice

Powersets

For any set X, the power set of X, P(P)(X) is a complete lattice under inclusion

(1日) (1日) (1日)

- Given some CPO D, let $\Theta(D)$ be a topology on D such that $U \in \Theta(D)$
 - $I if x \in U and x \leq y, then y \in U$
 - $if X \subseteq_d and \forall X \in U, then X \land U \neq \emptyset$
- Such a topology, $\Theta(D)$ is the Scott topology
- For any $x \in D$, set $U_x := \{z \in D \mid z \not\leq x\}$ is an open set.
- In general, D is T_0 but not T_1 by considering $x \neq y$ and $x \not\leq y$ and comparing U_x, U_y .

Prop: $f: D_1 \to D_2$ is continuous iff $f(\lor X) = \lor f(X)$ for all $X \subseteq_d D_1$

- We'll show that f is monotone first
- If f is continuous, towards a contradiction suppose that $x \leq_1 y$ and $f(x) \not\leq_2 f(y)$. Then $f(x) \in U_{f(y)}$ and therefore $x \in f^{-1}(U_{f(y)})$. Since $f^{-1}(U_{f(y)})$ is open, by the definition of the Scott topology, $y \in U_{f(y)}$, which is a contradiction. Hence f is monotone.
- The forward direction is proved by contradiction from the assumption that $f(\lor X) \not \lor f(X)$.
- In the reverse direction, given $x \le y \Rightarrow f(x) \le f(y)$, it follows $y = x \lor y$ and thus $f(y) = f(x) \lor f(y)$ so $f(x) \le f(y)$, thus if $U \in \Theta(D_1)$, then $f^{-1}(U) \in \Theta(D_2)$

4 日 2 4 周 2 4 月 2 4 月 2 4

Categorical Notions: Categories

- A category C consists of two classes:
 - A class of <u>objects</u> denoted |C|
 - A class of <u>morphisms</u> denoted C
 - A pair of maps Dom, Cod : C → |C| such that for every f ∈ C, f ∈ C(Dom(f), Cod(f)), the class of morphisms from X = Domf to Y = Codf
 - A composition operation typically denoted by ∘ (and diagrammatically denoted by ;) such that morphism classes denoted C(X, Y) with X, Y ∈ |C| satisfying the following axioms:
 - every object $X \in |C|$, there is $1_X \in C(X, X)$.
 - 2 for every $f \in C(X, Y), g \in C(Y, Z)$ and $h \in C(Z, W)$,

$$1_Y \circ f = f = f \circ 1_X, \qquad h \circ (g \circ f) = (h \circ g) \circ f$$

5

If C(X, Y) is a set for all objects X, Y ∈ |C|, then C is locally small

Example 0

The empty (or initial) category has no objects and no morphisms, and so it vacuosly satisfies the categorical axioms. Moreover $0 = |0| := \{\}$ as ordinary notions of *sets*.

Example 1

The unit (or final) category consists of a single object * and has only the identity map 1_* .

Example $\bullet_1 \xrightarrow{\rightarrow} \bullet_1$

This category consists of two unlabelled objects and two morphisms s, t from one bullet to the other in addition to the unlabelled identity maps

Categorical Notions: Examples of Categories

Example FinSets

This category consists of the class of finite abstract sets with n elements denoted by [n] and the class of all functions $f : [n] \rightarrow [m]$ for each $n, m \in \mathbb{N}$.

Example Sets

|Sets| consists of the class of (small) sets in your favorite set theory, and the class of morphisms Sets consists of the sets Sets(X, Y) which consist of set functions $f : X \to Y$, for every pair of sets $X, Y \in |Sets|$.

Example Sets \rightarrow

 $|\text{Sets}^{\rightarrow}|$ consists of all $f : X \to Y$, for every $X, Y \in |\text{Sets}|$; given $f : X \to Y$ and $g : Z \to W$, a morphism in $\text{Sets}^{\rightarrow}$ are pairs of set functions (h_g, h_f) such that $h_f \circ f = g \circ h_g$

Categories: More Examples

Posets

 $\bullet\,$ Any poset (P, $\leq)$ may be regarded as a category, with $\leq\,$ being

the only morphism in each morphism class P(x, y).

• We can form the category of posets, Pos whose objects are posets, and whose morphisms are order preserving maps

CPO

The category of complete partial orders is a *subcategory* of Pos whose <u>objects</u> are complete partial orders and whose <u>morphisms</u> are the order preserving maps.

$\Theta(X)$

Let X be a topological space with an *arbitrary* topology $\Theta(X)$. The open sets are the <u>objects</u> in this category, and <u>morphisms</u> are given by inclusion \subseteq .

- A graph $\mathcal{G} := (\mathcal{V}, \mathcal{E}, \sigma, \tau)$, with $\sigma, \tau : \mathcal{E} \to \mathcal{V}$.
- Categorically, $\mathcal{E}\equiv \mathsf{C}$ and $\mathcal{V}\equiv |\mathsf{C}|$
- Each category may be naturally viewed as a graph. We may also form a category Grph whose objects are graphs, and whose arrows are graph morphisms.

Not only are sets categories, but we can treat *predicates* on sets as a category as follows:

- objects are pairs (I, X) such that X ⊆ I. We say that "X is a predicate of Y" and write X(i) for i ∈ X. This choice of notation is intended to emphasize that i ∈ I may be chosen as a free variable
- **2** morphisms $(I, X) \rightarrow (J, Y)$ are functions $u \in \text{Sets}(I, J)$ such that for all $i \in I$, X(i) implies Y(u(i))

Just as we may turn predicates on sets into a category, we may also turn relations on sets into a category. We present the category of binary relations Rel as follows:

- <u>objects</u> are pairs (I, R) where $I \in |Sets|$ and $RI \times I$
- e morphisms $(I, R) \rightarrow (J, S)$ are set functions $u \in \text{Sets}(I, J)$ such that for all $i, j \in I$, R(i, j) implies that S(u(i), u(j))

- <u>Objects</u> are groups *G*, and <u>morphisms</u> are group homomorphisms *f*, e.g. $f(g_{1g}2) = f(g_1)f(g_2)$
- The category of abelian groups Ab is defined likewise.
- Given an abelian group G, EndG := Ab(G, G) can be used to define a ring, with 0 : g → 0 and 1 : g → g, addition given naturally and multiplication given by composition ∘ i.e. for all x, y, z ∈ End(G) and g, h ∈ G

- Objects are commutative rings R, and morphisms are ring homomorphisms f, e.g.
 f(ax + by) = f = (ax) + f(by) = f(a)f(x) + f(b)f(y)
- Any $R \in CRing$ can be used to define a category R-mod.
- Recall that an R-module M is an abelian group M and an *R*-action defined by $\rho \in \text{CRing}(R, \text{End}(M))$ such that for any $r \in R$ and $m \in M$, $rm := \rho(r)(m)$.

- Objects are (left) R-modules M and morphisms are module homomorphisms (e.g. $f : M \to N$ such that f(rx + y) = f(rx) + f(y) = rf(x) + f(y))
- An (R,S)-module or bimodule is an abelian group M which is a left R-module and a right S-module such that for all r ∈ R and s ∈ S and m ∈ M

$$(rm)s = r(ms)$$

CLAIM If M, N are R-modules, and M is an (R,S)-module, then R-mod(M, N) has an SS-module structure. PROOF $\forall f \in \text{R-mod}(M, N) \forall s, t \in S \forall m \in M$

$$(s \cdot_S f)(rm) = f((rm)s) = f(r(ms)) = rf(xs)$$

and

$$(st \cdot f)(m) = f(mst) = (t \cdot f)(xs) = s \cdot (t \cdot f)(x)$$

follows by setting $(s \cdot f)m := f(ms)$, i.e. $s \cdot f$ is *R*-linear and a *ring* action and hence R-mod(M, N) may be regarded as an S-module.

(Covariant) Functors $\mathcal{F}:\mathsf{C}\to\mathsf{D}$ are maps between C and D such that

- for all $X \in |\mathsf{C}|, \ \mathcal{F}(X) \in |\mathsf{D}|$
- for all $f \in \mathsf{C}$, $\mathcal{F}(f) \in \mathsf{D}$
- for all $X \in |\mathsf{C}|$ and composable $f, g \in \mathsf{C}$,

$$\mathcal{F}(1_X) = 1_{\mathcal{F}(X)}$$

and $\mathcal{F}(g \circ f) = \mathcal{F}(g) \circ \mathcal{F}(f)$

Example

The identity functor takes $X \in |C|$ to X and $f \in C$ to f

Example

We may consider any set X to be a functor $\mathcal{X} : 1 \rightarrow \mathsf{Sets}$.

- A functor *F* : C → D is full when for every *X*, *Y* ∈ |C|, the mapping on arrows *X*, *Y* : C(*X*, *Y*) → D(*F*(*X*), *F*(*Y*)) is surjective
- \mathcal{F} is faithful if each $\mathcal{F}_{X,Y}$ is injective
- C ⊆ D, ie. C is a subcategory of D, if |C| ⊆ |D| and C(X, Y) ⊂ D(X, Y) for all X, Y ∈ |C|, and composition in C is a restriction of composition in D
- A subcategory $C \subseteq D$ is broad when |C| = |D|.

• Given a functor $p : E \rightarrow B$, we can define a *new* category

with respect to every object in the image of p. Let $I \in |B|$, and define $E_I := p^{-1}(I)$ such that

- <u>objects</u> are $X \in |\mathsf{E}|$ such that p(X) = I
- **2** morphisms are $f \in E(X, Y)$ such that $p(f) = 1_I \in B$
 - E₁ is the fibre category over I
 - We say that $X \in |E_I|$ is above I and similarly $f \in E$ such that p(f) = u is said to be above u.

Functors: Fibrations

- Given a functor $p : E \to B$, we say $f \in E$ is Cartesian over and $u \in B(I, J)$ if p(f) = u and for every $g \in E(Z, Y)$ such that $p(g) = u \circ w$ for some $w \in B(p(Z), I)$ there is a <u>uniquely</u> determined $h \in E(Z, X)$ above w with $f \circ h = g$
- *f* ∈ E(X, Y) is a Cartesian if it is Cartesian over its underlying map *p*(*f*).
- *p* is a fibration if for every *Y* ∈ |E| and *u* ∈ B(*I*, *p*(*Y*)) there is a cartesian morphism *f* ∈ E(*X*, *Y*) over *u*
- Practically understood, fibrations capture *indexing* and *substitution*

Fibrations Example

Let $I \in |Sets|$.

- The fibre category Pred_I is the subcategory of predicates on I identified with the poset category (P(P)(I), ⊆) ordered by inclusion
- Given any $u \in \text{Sets}(I, J)$ we can define a substitution functor $u^* : P(P)(J) \to P(P)(I)$ via

$$(Y \subseteq J) \mapsto (\{i \mid u(i) \in Y\} \subseteq I)$$

- If u = π : I × J → I, then π* is called weakening as it is given by X ↦ {(i,j) | i ∈ X ∧ j ∈ J} by adding a dummy variable j ∈ J to the predicate X
- If $u = \Delta : I \to I \times I$, then Δ^* is called contraction as it is given by $P(P)(I \times I) \ni Y \mapsto \{i \in I \mid (i, i) \in Y\}$, and thus replaces two variables of I with a single variable.

- Continuing our work on Pred, we can also define quantifiers as follows: For any X ⊆ I × J
 - $\exists (X) := \{i \in I \mid \exists j \in J, (i,j) \in X\}$ which is a subset of I
 - $\forall(X) := \{i \in I \mid \forall j \in J, (i,j) \in Y\}$ which is also a subset of I
 - The assignments given by the quantifiers are functorial on $P(P)(I \times J) \rightarrow P(P)(I)$
- We can also capture the notion of equality using the diagonal Δ by defining for $\nabla_{\Delta}(X) = \Delta(X) = \{(i, j) \mid i = j \ i \neq j \in X\}$

 $Eq(X) := \Delta(X) = \{(i,j) \mid I \times I \mid i = j \land i \in X\}$

Continuing our work on Pred and Rel we can also catpure notions of truth, comprehension, and quotients via functors

- (Truth) We can also capture the notion of truth by defining \top : Sets \rightarrow Pred by assigning each set X the 'truth' predicate $X \subseteq X$ on X.
- (Comprehension) Let $\{-\}$: Pred \rightarrow Sets be defined by sending $(X \subseteq I) \mapsto X$
- (Quotients) Let Q: Rel \rightarrow Sets be defined by taking $R \mapsto I/\bar{R}$ where \bar{R} is the least equivalence relation \equiv on I such that $R \subseteq \equiv$.
- The quotient construction is formed by pullbacks

- A graph and category are small if the collection of objects and arrows are both sets
- Every small graph G may be viewed as a functor from •1 → •2 to Sets such that
 - $\mathcal{G}(\bullet_1) := \mathcal{E} \in \mathsf{Sets}$
 - $\mathcal{G}(\bullet_2) : \mathcal{V} \in \mathsf{Sets}$
 - $\mathcal{G}(s) = \sigma : \mathcal{E} \to \mathcal{V} \text{ and } \mathcal{G}(t) = \tau : \mathcal{E} \to \mathcal{V}$

- Let Grp be the category of groups. Let $\mathcal{U} : \text{Grp} \to \text{Sets}$ the functor which sends each group to its underlying set and homomorphism to its underlying set function. This is called the forgetful functor.
- We could also let \mathcal{U} : Pred \rightarrow Sets be defined naturally by sending each predicate to its underlying set.
- If C is locally small, we can define a contravariant functor C(-, X) which sends objects Y to the set of arrows C(Y, X) and arrows $f : Y \to Z$ to $C(f, 1_X) : C(Z, X) \to C(Y, X)$

- For any category C, there is a functor $-^{op} : C \to C$ which fixes |C| pointwise, and sends $f \in C(X, Y)$ to $f^{op} \in C(Y, X)$
- In particular for any $(g \circ f) : X \to Y \to Z$, $(g \circ f)^{op} = f^{op} \circ g^{op} : Z \to Y \to X$
- Intuitively, this functor reverses the direction of the arrows in each commuting diagram in a category by reversing the source and targets of each map.
- A functor from A^{op} to B is called a contravariant functor

Representative Functors

æ

Given $f \in CRing(R, S)$, we may define

 $f^!$: R-Mod \rightarrow S-Mod

by setting $f^{!}(M) := \operatorname{R-Mod}(S, M)$, with S-action $s\alpha(s') := \alpha(ss')$ for each $\alpha \in \operatorname{R-Mod}(S, M)$.

• Let $f \in \text{CRing}(R, S)$ and $N \in |\text{S-mod}|$. We define restriction by scalars to be the functor

 $f_*:\mathsf{S}\text{-}\mathsf{mod}\to\mathsf{R}\text{-}\mathsf{mod}$

which fixes $M \in |S-mod|$ by pre-composing the S-action σ on M with $f : R \to S$, so that M is now an R-module, i.e. rm := f(r)m where $f(r) \in EndM$.

- This is covariantly functorial, and when *f* is injective, we may naturally view *R* as a subring of *S*, whence the name *restriction* by scalars.
- Since kernels and images of module homomorphisms are the same regardless of the base ring, restriction by scalars is trivially exact.
- S is a natural R-module, with the action of r on S given by the multiplication of f(r)s in S.

Functors: Tensors

• Suppose that $M, N \in |\mathbb{R}\text{-Mod}|$, then the tensor product $M \otimes_R N$ is an R-module given by an R-bilinear map $\otimes : M \times N \to M \otimes_R N$ such that every other R-bilinear $\varphi : M \times N \to P$ will factor *uniquely* through $M \otimes_R N$, e.g.

$$\exists ! \bar{\varphi}, (\varphi = \bar{\varphi} \circ \otimes)$$

- For all $N \in |R-Mod|$, $R \otimes_R N \cong N$, as every *R*-bilinear $R \times N \to P$ factors through *N* by setting $\otimes(r, n) = rn$.
- By the uniqueness property of universal objects, we have our natural isomorphism N ≅ R ⊗_R N
- We can define a covariant functor $\$

Lemma: If $M \in |\mathbb{R}\text{-Mod}|$ and N is (\mathbb{R}, \mathbb{S}) -bimodule, and $P \in |\mathbb{S}\text{-Mod}|$, then $\mathbb{R}\text{-Mod}(M, \mathbb{S}\text{-Mod}(N, P)) \cong \mathbb{S}\text{-Mod}(M \otimes_R N, P)$

- For every $\alpha \in \text{R-Mod}(M, \text{S-Mod}(N, P))$, there is a $\varphi: M \times N \to P$ determined via $\varphi(m, -): \alpha(m)$
- Such φ are \$Z\$-bilinear, and for any r ∈ R, m ∈ M, n ∈ N
 φ(rm, n) = α(rm,)(n) =₁ rα(m)(n) = α(m)(rn) = φ(m, rn)

Functors: Extension By Scalars, pt 2

æ

Given $\mathcal{F}:D\rightarrow C$ and an object $C \in |C|$, we denote by A/\mathcal{F} the comma category whose

- objects are the arrows $f : C \to \mathcal{F}(Y)$, denoted by (f, Y)
- morphisms are the arrows $h \in D(Y, Z)$ such that $\mathcal{F}(h) \circ f = f'$, i.e. $\langle \in A/\mathcal{F}((f, Y), (f, Z))$

• If
$$\mathcal{F} := 1_{\mathsf{C}}$$
, then $C/\infty_{\mathsf{C}} := C/\mathsf{C}$.

• Denote by $C/C:=(C/C^{op})^{op}$. This is the co-slice category.

- Inside categories, objects are unique up to *isomorphism.
- An arrow f ∈ C(X, Y) is an isomorphism if there is a g ∈ C(Y, X) such that g ∘ f = 1_X and f ∘ g = 1_Y; we say X is isomorphic to Y if such f, g exist.
- If $\mathcal{F}: \mathsf{C} \to \mathsf{D}$ and $\mathcal{G}: \mathsf{D} \to \mathsf{C}$ such that $\mathcal{F} \circ \mathcal{G} = \mathbf{1}_\mathsf{D}$ and $\mathcal{G} \circ \mathcal{F} = \mathbf{1}_\mathsf{C}$, then C is isomorphic to D

Presheaves

< 口 > < 同

→ < E → < E →</p>

æ

+Given two functors $\mathcal{F}, \mathcal{G} : C \to D$, a natural transformation $\eta : \mathcal{F} \Rightarrow \mathcal{G}$ is a *family of morphisms* $(\eta_x)_{|C|}$ indexed by |C|, such that for each $f \in C(X, Y)$,

$$\mathcal{G}(f) \circ \eta_X = \eta_Y \circ \mathcal{F}(f)$$

• Given any two categories C, D, we can define a functor category D^C whose objects are functor $\mathcal{F}: C \to D$ and whose morphisms are natural transformations

Let Grph be the category of graphs

- objects are functors $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \sigma, \tau)$ such that $\mathcal{V}(\mathcal{G})$ are the vertices of \mathcal{G} and $\mathcal{E}(\mathcal{G})$ are the directed edges;
- morphisms graph homomorphisms F : G ⇒ H are pairs of mappings
- $F: \mathcal{V}(\mathcal{G}) \to \mathcal{V}(\mathcal{G})$
- $F : \mathcal{E}(\mathcal{G}) \to \mathcal{E}(\mathcal{G})$ such that for $f : X \to Y$, $F(f) : F(X) \to F(Y)$.

Yoneda Lemma: If C is locally small, and $\mathcal{F} : C^{op} \to Sets$, then $Sets^{C^{op}}(C(-,X),\mathcal{F}) \cong \mathcal{F}(X)$

Denote $C(-, X) := h_X$. For any $\eta : h_X \Rightarrow \mathcal{F}$, we obtain $\eta_X(1_X) \in \mathcal{F}(X)$. On the other hand, given $x \in \mathcal{F}(X)$, we obtain natural transformation $\check{x} : h_X \to \mathcal{X}$ by setting $\check{x} : C(Y, X) \Rightarrow \mathcal{F}(X)$ such that $g : Y \to X$ is sent to $\mathcal{F}(g)(x)$. These maps are inverse to one another.